15 Different Types of Milling Machines - types of milling tools
Roughly 17% of tungsten carbide usage comes from the creation of specialized alloys and composite materials that contain other metals in them. Carbide can be combined with nickel, iron, silver, and copper to create materials that are utilized in commercial construction applications, electronics, industrial gear making, radiation shielding materials, and the aeronautical industry.
Contact one of the customer service professionals at Carbide- USA to learn more about our tungsten carbide recycling program.
Just over 10% of tungsten carbide is used exclusively for the manufacture of mill products including various end mills and mill inserts. These products vary in size and shape depending on the material they will be coming in contact with, but all are used for applications in grinding and milling. Because carbide is so hard and can be easily molded, it is possible to create accessories for precise milling applications that will yield coarsely grinded material or the finest powder.
While Carbide bits and tips last longer, they still need to be periodically replaced. Fortunately, the recycling incentives for the material are very fruitful, offering yet another reason to use it in mass. Carbide recycling facilities like Carbide- USA will pay top prices per pound for scrap. This helps to keep production costs down while allowing workers to use the highest quality tools and accessories day to day.
There are lots of metal compounds that are heavily used for various applications across the planet, but there are none that possess the particular attributes of tungsten carbide. This marrying of the element carbon and tungsten creates an alloy that is resistant to heat, rust, scratches, and pitting. Carbide also boasts an extremely high density with a hardness second only to diamond, excellent conductivity, all while boasting an overall strength that surpasses that of steel three times over. This compound is easily molded into many shapes, can be sharpened with precision, and can be melded with or grafted to other metals without issue. Tungsten carbide scrap is also one of the best candidates for recycling in its class, making the alloy extremely valuable for all sorts of applications, including those discussed below.
Drilling and mining tools made from cemented carbide are used for various construction applications and account for the greatest use the material anywhere in the world. In fact, about 65% of the market goes into making mining tips, drill bits, and other cutting and mining tools. Tungsten carbide products are preferred even over stainless steel because of their incredible hardness and resistance to wear and tear.
The above three applications make up more than 90% of carbide usage across the globe. However, one of the newest applications for tungsten carbide that is gaining popularity every day for making jewelry. Naturally, the hardness of carbide makes it an attractive alloy to use for crafting rings, pendants, earrings, and other jewelry, but when cut and polished correctly, the material is actually stunningly beautiful as well. In fact, tungsten based wedding and engagement rings are becoming all the rage lately and since tungsten carbide is cheaper than gold, it is cost effective as well.
The use of carbide in the medical industry offers another important application for the material because the tools that are made from it are often being used to save lives. Surgical tools are one of the most notable uses for grafted carbide as the stem of the tool is typically made of stainless steel or titanium, while the blade, tip, or end is made from carbide. Not only can carbide blades be sharpened to have a much finer edge due to the material’s hardness, but its resistance to pitting and rusting helps to give tools tipped with it much greater longevity.
Carbide is used for many other applications including tipping trekking or ski poles as well as cleats, the manufacture of fishing weights, and many cutting and pulverizing mechanisms for recycling machines. Always remember that regardless of what you might use carbide for that you recycle the material appropriately after it has run its course. Less than 10% of the world’s tungsten is found in the United States and it is up to each and every one of us to do our part in order to ensure that we are relying on foreign material as little as possible. The financial incentives that come from recycling carbide for you as well as the implications for the industry domestically are worth the time and effort.