ANT Industries, a leading manufacturer of aero engine and gas turbine components in Atherstone, Warwickshire, has announced a significant milestone in its commitment to quality and excellence.

To achieve these goals, the industry must constantly improve the design of aircraft engines and airframe structural elements, to increase the protection of the aircraft from the damaging action of such dangerous factors as lightning and icing. This in turn has resulted in a series of industry demands, including the introduction of engineering materials that require new production technologies, developing appropriate machinery and cutting tools. The aircraft manufacturer has to deal with complex parts, which are produced from various materials with the use of different machining strategies. This is why the aerospace industry is considered as a powerful and leading force for progress in cutting tool development.

There are three features of OSG’s AE-H ball nose end mills that make them ideal for machining hardened steels and die/mold applications, according to Minhas. “The first feature is the high precision radius tolerance of two-tenths that is very important for surface finish and reduces polishing time. The second feature is its unequal index, which reduces vibration. And the third feature is the variable rake angle, meaning that it’s not the same rake angle from the tip to the main diameter.”

Both tools are designed for machining aerospace engine components for the substantial backlog of aircraft engines, which is challenging to the supply chain. According to Strauchen, it’s critical for the supply chain to be able to increase throughput and reduce cycle times. “Engine and engine component manufacturers place a significant premium on productivity,” he said. “With backlogs being what they are, the value of time trumps tool cost and tool life every time.

Having trouble with your tapping process? If so, Bill Minhas, applications engineer-II for OSG USA Inc., Irving, Texas, advises checking the drilled hole for straightness and other defects that can destroy hole quality. “When I’m called into a shop that is having trouble with their tapping process, I usually find that most of the time it isn’t the tap, it’s the drilling process. If the drill is dull and not drilling straight, there are a number of defects that can destroy hole quality. I suggest checking the hole with a pin gage and replacing the drill with a new one.”

The NeoMill-Alu-QBig indexable insert milling cutter from Mapal stands for top performance in high-volume milling of aluminium. The tool manufacturer thus offers a very economical solution for use on high-performance machines, such as those found primarily in the aerospace industry.

Iscar’s modular drills for multi-spindle and Swiss-type machines combine the SUMOCHAM design with a FLEXFIT threaded connection [Fig3]A further example of simplified customisation can be found in Iscar’s modular drills for multi-spindle and Swiss-type machines. The drills combine the SUMOCHAM design with a FLEXFIT threaded connection (Fig. 3). Multi-spindle and Swiss-type machines typically have a limited space for tooling, which means that the tools in operation need to be as short as possible to avoid collisions and facilitate easy set up. A wide range of FLEXFIT threaded adaptors and flatted shanks has been designed precisely to fit the drills and maximally shorten an overhang.

OSG’s ADO SUS drills for titanium and stainless feature the company’s proprietary WXL coating; specially shaped coolant holes for 33 percent more coolant flow to the cutting edge; and cutting forces that are always 90º to the cutting edge. With a wavy cutting edge, there isn’t a large cutting force going in one direction, which minimizes heat producing friction—an important feature in stainless steel and titanium machining.

The need to increase productivity and boost metal removal rates for milling aluminium workpieces, especially large parts of aerospace structural components, has led machine tool builders to develop milling machines with a powerful main drive - up to 150kW - with high spindle speeds of up to 33,000rpm. To meet this demand, Iscar has expanded its family of 90° indexable milling cutters by introducing new tools carrying large-size inserts that enable up to 22mm depth of cut (Fig. 4). The tools have been designed to eliminate insert radial displacement, which might occur due to high centrifugal forces during very high rotational speed. This concept facilitates reliable milling in a rotational speed range of up to 31,000rpm.

Although machining aluminium might appear to be an extremely simple process, effective cutting of aluminium actually represents a whole field of technology with its own laws and challenges.

If you find this article informative, consider subscribing digitally to Aerospace Manufacturing for free. Keep up to date with the latest industry news in your inbox as well as being the first to receive our magazine in digital form.

Horn’s DSFT end mills—part of the DS line of high-DOC, low-radial-engagement tools—are designed for the consistent chip thinning required to get the maximum advantage out of these strategies. “With an end mill, you are normally looking at radial chip thinning, unless it’s a ball nose where you have radial chip thinning and an approach angle,” said Tonne. “Radial chip thinning requires a very accurate system or you’ll lose your advantage and chip or destroy the tool. There’s a balance between how many flutes you put on a tool, how fast you need to go, and the volume of chips that are going to reside in that flute. Typical for a half-inch mill, you would look for a five-flute end mill for trochoidal milling of gummy materials.”

The aerospace industry features continuous efforts aimed at improving aircraft component manufacturing efficiency, increasing flight safety, and reducing potential environmental damage.

Responding to demands from the aerospace sector, the company also expanded the MULTI-MASTER family by introducing a new thread connection to increase the diameter range for the exchangeable endmill heads to 32mm.

The brazed ceramic tip end mill is capable of machining five to 10 times faster than a carbide tool when machining heat-resistant superalloys like Inconel 718. For example, while a solid-carbide tool might reach 100 to 150 sfm, the new brazed tip tool can reach speeds of 400 to 900 sfm. “Of course because it’s a brazed tip rather than solid ceramic, the cost of the tool is much lower,” Strauchen pointed out.

The aerospace industry features continuous efforts aimed at improving aircraft component manufacturing efficiency, increasing flight safety, and reducing potential environmental damage. To achieve these goals, the industry must constantly improve the design of aircraft engines and airframe structural elements, to increase the protection of the aircraft from the damaging action of such dangerous factors as lightning and icing. This in turn has resulted in a series of industry demands, including the introduction of engineering materials that require new production technologies, developing appropriate machinery and cutting tools. The aircraft manufacturer has to deal with complex parts, which are produced from various materials with the use of different machining strategies. This is why the aerospace industry is considered as a powerful and leading force for progress in cutting tool development. Many materials used for manufacturing aircraft components have poor machinability. Titanium, high temperature superalloys (HTSA) and composites are difficult-to-cut materials. In order to increase output rate and improve productivity, aerospace component manufacturers must use machine tools capable of implementing advanced machining operations. In such conditions, the role of cutting tools are significantly increased; however, they can represent the weakest link in the whole manufacturing system due to their low durability as a system element, which can decrease productivity. Aerospace customers expect higher levels of performance and reliability from cutting tools and manufacturers have been both challenged and inspired, in terms of developing and integrating sometimes unconventional solutions into their products, to meet these expectations. Basic materials Most cutting tools continue to be manufactured from cemented carbide. Over recent years, Iscar has introduced several carbide grades designed specifically for aerospace materials, including IC 5820. The grade combines the advantages of a new submicron substrate, a progressive hard CVD coating, and a post-coating treatment to substantially increase impact strength and heat resistance. The inserts from this grade are intended mostly for milling titanium. Pinpointed wet cooling and especially high-pressure coolant (HPC) significantly improve grade performance. Ceramics, another tool material, possess considerably higher hot hardness and chemical inertness than cemented carbides. This means that ceramics ensure much greater cutting speeds and eliminate diffusion wear. One of the last Iscar's developments, a family of solid ceramic endmills, is intended for machining HTSA. These endmills are made from SiAlON - a type of silicon-nitride-based ceramic comprising silicon, aluminium, oxygen and nitrogen. When compared with solid carbide tools, the endmills enable an increase in cutting speed of up to 50 times, which can drastically save machining hours. For turning applications, the company expanded its line of indexable SiAlON inserts for machining HTSA materials. The new products (Fig. 1) have already proved their effectiveness in turning aero engine parts from super alloys such as Waspaloy and different Inconel and Rene grades. In contrast to other silicon nitride ceramics, SiAlON possesses higher oxidation resistance but less toughness. Therefore, a key of a SiAlON insert reliability is additional edge preparation. Iscar's new ‘TE’ edge geometry has been developed to increase tool life in heavy load conditions during rough operations and interrupted cuts. Advanced geometry Improving a cutting geometry is an important direction in the development of cutting tools. Cutting geometry is a subject of theoretical and experimental researches, and advances in science and technology have brought a new powerful instrument to aid in tool design: 3D modelling of chip formation. Iscar’s R&D team actively uses modelling to find optimal cutting geometries and form the rake face of indexable inserts and exchangeable heads. The F3S chipformer has been designed for finish turning high temperature nickel-based alloys and exotic materials [Fig2]The F3S chipformer for the most popular ISO inserts, such as CNMG, WNMG and SNMG, was designed specifically for finish turning high temperature nickel-based alloys and exotic materials (Fig. 2). It ensures a smooth and easy cut with notable chip breaking results. The remarkable working capability of the designed cutting geometry is a direct result of chip flow modelling. In hole making, applying modelling to the design process significantly contributed to creating a chip splitting geometry of SUMOCHAM exchangeable carbide heads for drilling holes with depth up to 12-hole diameters in hard-to-cut austenitic and duplex stainless steel. Flexible customisation Aerospace products can vary immensely in material, dimensions, shape, complexity, and more. To make such a diverse range of products, the product manufacturer needs dozens of machine tools and technological processes. Not every standard cutting tool is optimal for performing certain machining operations with maximum productivity and, consequently, the aerospace industry is a leading consumer of customised tools. A customer producing titanium parts might be interested in solutions comprising indexable shell mills and arbors from the standard line; while another customer producing similar parts might prefer special milling cutters with an integral body, for direct mounting in a machine spindle. Iscar developed the MULTI-MASTER and SUMOCHAM families of rotating tools with exchangeable heads and different body configurations to ensure various tool assembly options that simplify customisation and decrease the need for costly tailormade products. Iscar’s modular drills for multi-spindle and Swiss-type machines combine the SUMOCHAM design with a FLEXFIT threaded connection [Fig3]A further example of simplified customisation can be found in Iscar’s modular drills for multi-spindle and Swiss-type machines. The drills combine the SUMOCHAM design with a FLEXFIT threaded connection (Fig. 3). Multi-spindle and Swiss-type machines typically have a limited space for tooling, which means that the tools in operation need to be as short as possible to avoid collisions and facilitate easy set up. A wide range of FLEXFIT threaded adaptors and flatted shanks has been designed precisely to fit the drills and maximally shorten an overhang. Responding to demands from the aerospace sector, the company also expanded the MULTI-MASTER family by introducing a new thread connection to increase the diameter range for the exchangeable endmill heads to 32mm. Aluminium machining Although machining aluminium might appear to be an extremely simple process, effective cutting of aluminium actually represents a whole field of technology with its own laws and challenges. The need to increase productivity and boost metal removal rates for milling aluminium workpieces, especially large parts of aerospace structural components, has led machine tool builders to develop milling machines with a powerful main drive - up to 150kW - with high spindle speeds of up to 33,000rpm. To meet this demand, Iscar has expanded its family of 90° indexable milling cutters by introducing new tools carrying large-size inserts that enable up to 22mm depth of cut (Fig. 4). The tools have been designed to eliminate insert radial displacement, which might occur due to high centrifugal forces during very high rotational speed. This concept facilitates reliable milling in a rotational speed range of up to 31,000rpm. Iscar has expanded its family of 90° indexable milling cutters by introducing new tools carrying large-size inserts [Fig4]In hole making, the company developed new inserts for drilling aluminium with indexable drills from the DR-TWIST drilling tool range. The inserts are peripherally ground and feature sharp cutting edges and polished rake face for light cut, preventing adhesion. Iscar's cutting tool program for the aerospace sector is based on several principles: the complex needs of this industry, taking into consideration trends in metalworking, and the drive to strengthen partnerships with tool consumers. Iscar believes that such a tri-pronged approach ensures the successful realisation of innovative ideas for efficient machining of the difficult-to-cut materials that characterise this challenging and dynamic field. www.iscar.co.uk

Solid-carbide round tools cover a wide range of applications, including drilling, milling, as well as reaming and threading. The newest product innovations, however, are opening eyes in job shops and production shops to their capabilities in finish machining. New end mill and drill product lines are coming out almost daily that improve machining processes for the more mundane applications in cast iron and steel to the increasingly complex demands of titanium, stainless steel and heat-resistant superalloys (HRSA). Following are suggested approaches by leading suppliers to finding the right tooling match for a variety of applications.

Three flutes are optimal for slotting and five flutes and up for more advanced processes like trochoidal strategies. For finishing operations, tools may have up to 16 flutes or more, according to Tonne.

“With longer drills the designs are changing,” Cline continued. “For our 20×D, we’ll have four margins down on the bottom. When the first part of the drill is engaged, it has four margins and two of the margins will drop off as you go up the drill body and it’ll be a double-margin drill. Also, you’ll see designs where the gullets have been increased due to the strength of the substrates. The helix ratios will change and the core diameters will change when drilling really deep (20×D). The chips come up the body and we’ll alter the inside diameter of the core to facilitate ejecting them.”

Iscar's cutting tool program for the aerospace sector is based on several principles: the complex needs of this industry, taking into consideration trends in metalworking, and the drive to strengthen partnerships with tool consumers. Iscar believes that such a tri-pronged approach ensures the successful realisation of innovative ideas for efficient machining of the difficult-to-cut materials that characterise this challenging and dynamic field.

Image

In hole making, applying modelling to the design process significantly contributed to creating a chip splitting geometry of SUMOCHAM exchangeable carbide heads for drilling holes with depth up to 12-hole diameters in hard-to-cut austenitic and duplex stainless steel.

For turning applications, the company expanded its line of indexable SiAlON inserts for machining HTSA materials. The new products (Fig. 1) have already proved their effectiveness in turning aero engine parts from super alloys such as Waspaloy and different Inconel and Rene grades. In contrast to other silicon nitride ceramics, SiAlON possesses higher oxidation resistance but less toughness. Therefore, a key of a SiAlON insert reliability is additional edge preparation. Iscar's new ‘TE’ edge geometry has been developed to increase tool life in heavy load conditions during rough operations and interrupted cuts.

Iscar developed the MULTI-MASTER and SUMOCHAM families of rotating tools with exchangeable heads and different body configurations to ensure various tool assembly options that simplify customisation and decrease the need for costly tailormade products.

Ti Feed end mills are available in coolant-through and solid configurations in 3/8-1" (9.53-25.4 mm) sizes with the most popular being ½" (12.7 mm). “Z-level processing engine parts with the Ti Feed mill taking a lot of light cuts doesn’t produce a lot of torque or load on the workpiece,” Strauchen said. “Ti Feed end mills take advantage of radial chip thinning, wherein higher feed rates can be realized with lighter depths of cut to rough parts to near net shape. The optional coolant-through capability dramatically improves thermal resistance, which is critical in machining titanium alloys.”

The F3S chipformer has been designed for finish turning high temperature nickel-based alloys and exotic materials [Fig2]The F3S chipformer for the most popular ISO inserts, such as CNMG, WNMG and SNMG, was designed specifically for finish turning high temperature nickel-based alloys and exotic materials (Fig. 2). It ensures a smooth and easy cut with notable chip breaking results. The remarkable working capability of the designed cutting geometry is a direct result of chip flow modelling.

Woodgate Business Park Clapgate Lane Bartley Green B32 3DE UNITED KINGDOM 0121 244 3061

Solid-carbide round tools have seemingly been around forever; before them, high-speed steel (HSS) tools ruled the roost, and after them a growing selection of alternative processes like indexables, EDM, waterjet and now additive manufacturing emerged as competition.

Image

Tooling manufacturer, Horn has introduced a new carbide insert grade, SG66, for turning components from steel that has been case hardened to 58 HRC.

Image

“You can’t walk into an aerospace shop without seeing titanium and stainless steel everywhere,” Clynch continued. “Our new carbide grades allow us to run much faster for machining those material types. For example, the Ti-Turbo end mill machines titanium at 250-300 sfm, compared to normal cutting speeds of 140-160 sfm. Heat is a critical consideration when machining with carbide. When we engineer new carbide substrates, we’re looking for ways to remove as much cobalt content as possible within the substrate because cobalt melts at high temperatures and studies have shown that wear rates increase as cobalt content is increased.”

Also new from OSG is the 1 to 2-mm ADO microdrill for medical and dental applications, available in 2×D to 3×D lengths. “The ADO micro features coolant-through for good chip evacuation and, though it’s small, has a double margin that is important for stability in the hole,” said Minhas.

Connect with the manufacturing community and supply-chain across 3 days at the UK’s leading annual industrial event.

Ceramics, another tool material, possess considerably higher hot hardness and chemical inertness than cemented carbides. This means that ceramics ensure much greater cutting speeds and eliminate diffusion wear. One of the last Iscar's developments, a family of solid ceramic endmills, is intended for machining HTSA. These endmills are made from SiAlON - a type of silicon-nitride-based ceramic comprising silicon, aluminium, oxygen and nitrogen. When compared with solid carbide tools, the endmills enable an increase in cutting speed of up to 50 times, which can drastically save machining hours.

According to Cline, a drill can be produced with a larger gullet area without sacrificing the strength and integrity of the tool. “In the past, if you wanted to make a drill with a large gullet, you would either make it stubby or sacrifice some of the penetration rate since you would run slower to reduce force,” he said. “For faster drilling, we have a line of three-flute solid-carbide drills for a higher penetration rate in order to reduce cycle times.”

Horn’s multi-flute end mills for machining titanium, Inconel, stainless and other high-temperature resistant metals benefit from high-speed and high-efficiency strategies. The highest MRR possible in high-speed machining with multi-flute tools happens when the process engages the full flute length of the tool. “The more flutes, the larger the core diameter of the tool needs to be for rigidity,” he said.

What are the main drivers in milling? “That is the first question we ask and one that has multiple answers,” he said. “Machining costs (productivity), tooling costs (cost per edge), and tool change costs (tool life) are three considerations for determining the impact that a cutting tool can have on cost per unit (CPU) in a manufacturing environment. We simply inform the end user to pick two of the three drivers because achieving all three simultaneously is practically impossible. Once we know the drivers that the end user needs, we choose specific tooling from three product areas: high-performance; standard (or legacy type, standard flute/helix design); and a newly introduced general-purpose product.”

Edwin Tonne, training and technical specialist for Horn USA Inc., Franklin, Tenn, puts a little bit of a different twist on the evolution of solid-carbide round tools and looks into the background of machine technology to determine “which came first, improved tools or improved machines. Better precision of all components, more sophisticated electronics and control systems have produced superior machine technology,” said Tonne. “Advanced machining centers with the required acceleration and deceleration in combination with advanced CAM programming have set the stage for serious improvements in solid-carbide round tools. End mills, for example, are able to be designed with more flutes, as many as 16, and with chip gullets to facilitate chip removal.”

Heule’s products are used for new materials and processes such as dry machining or minimum mist, as well as drilling holes in small motors and medical applications. “Our products are used anywhere holes are drilled that have burrs that have to be removed. They eliminate a lot of manual operations, making it possible to manufacture products from beginning to end without touching them or with minimal manual intervention.”

Improving a cutting geometry is an important direction in the development of cutting tools. Cutting geometry is a subject of theoretical and experimental researches, and advances in science and technology have brought a new powerful instrument to aid in tool design: 3D modelling of chip formation. Iscar’s R&D team actively uses modelling to find optimal cutting geometries and form the rake face of indexable inserts and exchangeable heads.

Iscar has expanded its family of 90° indexable milling cutters by introducing new tools carrying large-size inserts [Fig4]In hole making, the company developed new inserts for drilling aluminium with indexable drills from the DR-TWIST drilling tool range. The inserts are peripherally ground and feature sharp cutting edges and polished rake face for light cut, preventing adhesion.

Aerospace products can vary immensely in material, dimensions, shape, complexity, and more. To make such a diverse range of products, the product manufacturer needs dozens of machine tools and technological processes. Not every standard cutting tool is optimal for performing certain machining operations with maximum productivity and, consequently, the aerospace industry is a leading consumer of customised tools.

Advanced CAM programming enables milling strategies that include high-speed milling, high-efficiency milling, optimized roughing and proprietary CAM software. “In the past, for a pocketing application you might use a two- or three-flute end mill. Now you can use a high-performance drill to start the hole and trochoidal milling to complete the pocket. You couldn’t do that before the control system and CAM were up to snuff,” Tonne explained.

Deburring drilled holes and bores in production quantities represents a challenge to companies in virtually every industry. To deal with these challenges, deburring products and processes from Heule Tool Corp., Loveland, Ohio, are being used by manufacturers in aerospace, automotive, heavy equipment, energy, medical and precision machining for their finishing operations.

“Like many industries, the aircraft industry has transitioned to using more five-axis machining centers to produce parts like turbine blades,” Strauchen continued. “The combination of five-axis machines and fixturing is often not conducive to certain types of roughing, where you would traditionally take the whole length of the cut of the tool and use a trochoidal milling path to rough out the material. That’s a very efficient way to rough but a lot of machining environments, especially five-axis, don’t permit that style of machining and require Z-level machining tool paths instead.”

Before you can pick the right tool, you need to first determine what it will be used for. “In order to select the correct solid-carbide round tool for a given milling application, we must understand the end user’s main driver,” said Matt Clynch, national product specialist-milling at Iscar USA, Arlington, Texas.

Walter has now launched its new X·treme Evo Plus drill from the DC180 Supreme product family that is now available up to 8XD for the first time.

Micrograin carbides continue to be a key element of the tools. They represent the best way to achieve the middle ground between a tough, coarse carbide grade with lower cutting speed or a higher speed but brittle cutting grade. “A coarse-grain end mill can take more abuse without chipping but its speed and productivity are lower. You can have a tough carbide grade or a higher-speed carbide grade or something in the middle. Our grade is durable with higher speed capability,” Tonne said.

GWS Tool Group, Tavares, Fla., has introduced a new Ti Feed mill specifically for machining titanium. Not yet released but coming in the fall is a combination solid-carbide tool with brazed ceramic milling head for high-feed milling of high-temperature alloys like Inconel 718, according to Drew Strauchen, executive vice president.

Chip evacuation is a major limiting factor in drilling that is being addressed by twisted coolant-through holes, according to Cline. “The twisted coolant holes allow for deep chip gullets with plenty of room to evacuate chips while maintaining a very large and strong core,” he said. “The rigidity of solid carbide allows increasing the length-to-diameter ratios of solid-carbide tools to 20, 30, 40 and even 50 times diameter—ratios unimagined in the past. You wouldn’t see this in the past because if the carbide was tough, it had no wear resistance and if it had wear resistance it was so brittle that it would deflect and break.

Minhas explained the advantage of having the variable rake angle on the AE-H end mill: “Ball end mills always start cutting at the tip, which is not rotating. The variable rake angle is very strong at the tip to avoid chipping. Then, as you go further up to the diameter of the tool, it’s sharper so that you can cut the material lightly.”

“The biggest challenges our customers face are location and part variation, which can occur for a variety of reasons, including tool and process failure, uneven surfaces or drilling difficult configurations or drilling at angles,” said Gary Brown, president of Heule Tool. “The majority of our tools are compensation tools, meaning they are spring loaded or activated by centrifugal force. They perform processes like back boring, back machining, back chamfering, compensating, counter sinking and combination drilling. Products are available to handle all types of materials, including nickel-alloys all the way down to brass, bronze and composites.”

A customer producing titanium parts might be interested in solutions comprising indexable shell mills and arbors from the standard line; while another customer producing similar parts might prefer special milling cutters with an integral body, for direct mounting in a machine spindle.

The AE-H ball nose end mill has OSG’s Durorey multi-layer coating on the substrate. Coatings are super heat resistant with an ultrafine nano structure and a special strength medium for long life, fine finish, and process stability, according to Minhas.

Iscar’s high-performance line is tailored with specific geometries for various material groups like stainless steel, titanium, and 4000 series alloys. “One of the secrets to high-performance capability is found in the geometries that can be produced with new advanced grinding technology and software,” said Clynch. “If you can imagine a cutting edge geometry, today’s advanced machines and software can grind edge geometry and improve chip gullet designs for ejecting or evacuating chips out of the cutting zone.

Today’s advanced solid-carbide drills feature modern carbide substrates, coatings, edge preps and updated software for grinding machine capability that allows putting different styles of grinds on the drills, according to Patrick Cline, national holemaking product manager, Iscar USA. “The trend with solid-carbide drills is to machine materials in the hardened rather than in the soft state before heat treating,” he said.

Most cutting tools continue to be manufactured from cemented carbide. Over recent years, Iscar has introduced several carbide grades designed specifically for aerospace materials, including IC 5820. The grade combines the advantages of a new submicron substrate, a progressive hard CVD coating, and a post-coating treatment to substantially increase impact strength and heat resistance. The inserts from this grade are intended mostly for milling titanium. Pinpointed wet cooling and especially high-pressure coolant (HPC) significantly improve grade performance.

“The real limitation in machining efficiency is that when you produce a chip it has to go someplace,” he said. “If the volume of the chip is more than the flute can handle, pressure will build behind the cutting edge and breakage or crashes can result.”

Many materials used for manufacturing aircraft components have poor machinability. Titanium, high temperature superalloys (HTSA) and composites are difficult-to-cut materials. In order to increase output rate and improve productivity, aerospace component manufacturers must use machine tools capable of implementing advanced machining operations. In such conditions, the role of cutting tools are significantly increased; however, they can represent the weakest link in the whole manufacturing system due to their low durability as a system element, which can decrease productivity. Aerospace customers expect higher levels of performance and reliability from cutting tools and manufacturers have been both challenged and inspired, in terms of developing and integrating sometimes unconventional solutions into their products, to meet these expectations.

Iscar’s IC903 coated grade solid carbide, with an AH grind special edge prep, drills materials with hardnesses from 55 to 70 Rc. “In the past, you would have to put the holes in the part while in a soft state, which may not be optimal, but your only other option would be to ram EDM the hole which is a slower process,” said Cline.