28000 Seychelles Rupee to Canadian Dollar. /, 28000 Seychelles Rupee to ... USD / CAD1.3686; AUD / USD0.667; EUR / GBP0.8525; EUR / JPY162.9296; GBP / JPY ...

General Description: Countersink drill bits create a tapered surface hole with a smaller center hole that penetrates through the material (some are available without a center drill for countersinking existing holes). The purpose of a countersink is to allow a tapered head fastener to sit flush with the surface of the material. Countersinks on our site are designed for use in wood or plastics and are not intended for counterboring steel.

ISOinsertnomenclature pdf

Hardness is a measure of the resistance of a material to surface indentation or abrasion. There is no absolute scale for hardness. In order to express hardness quantitatively, each type of test has its own scale, which defines hardness. Indentation hardness obtained through static methods is measured by Brinell, Rockwell, Vickers and Knoop tests. Hardness without indentation is measured by a dynamic method, known as the Scleroscope test.

Coatings: General purpose drill bits are available with black oxide, bronze oxide, a combination of black and bronze oxide, and TiN coatings. Twist drills for automated machinery on our site are primarily for use in wood or plastics and are not coated.

Tip Styles: The cutting tip of a flat bottom boring drill consists of one or more flat blades extending from the center to the outer edge. Flat bottom boring bits are available with or without spurs (teeth) at the outer diameter of the bit. Bits with spurs on the outer edge prevent chipping and splintering on wood or laminated surfaces. Some flat bottom boring bits also include a center spur to keep the bit from walking during the initial cut - Spade bits are a good example.

Turning insertIdentification chart

Also, a machine operator can vary a round insert’s approach angle to reduce chip thickness. “We’re always looking for thinning the chip,” Gardner said. “When we thin the chip with the approach angle, it gives us better productivity; we create less heat. The more heat we put into them, the more friction we create, the more [heat] these materials will throw back,” producing a burned-out insert. Protecting the tool from burn-out doesn’t mean applying it timidly, though.

Round inserts can be made with different features, like a chamfer (upper left and lower right) and a positive rake angle (lower right), to reduce problems that can be encountered when turning high-nickel alloys.

Groove or other tool geometry that breaks chips into small fragments as they come off the workpiece. Designed to prevent chips from becoming so long that they are difficult to control, catch in turning parts and cause safety problems.

ISOinsertchart

Parts used in extreme conditions require extreme materials. The part may be a large ring or shroud in a jet engine, which operates at up to 1,200° F, or can be a down-hole component in an oil field, operating in a corrosive environment hundreds of feet underground.

Round inserts can’t cut small-radius corners and aren’t well suited to creating complicated profiles, but the tools have the strongest shape of any insert and can be applied at high feed rates. With appropriate rake angles and cutting strategies, the round insert is excellent at the extreme task of turning high-nickel alloys to create parts for the extreme environments inside jet engines and down-hole in oil fields. CTE

Flute Styles: Most twist drills have flutes to evacuate the chips at an unspecified angle, and are suitable for the majority of applications. Some specialty twist drills may be designated as "High Helix", "Fast Spiral" or "Low Helix", "Slow Spiral" for specific applications requiring higher or lower spindle speeds or feed rates.

Shank Styles: Twist drill bits designed for use in automated machinery have fixed diameter (usually 1/2" or 10mm) shanks, threaded shanks, or specialty shanks designed for certain machines. General purpose twist drills for use in portable drills have shanks the same diameter as the bit size (up to a certain diameter), larger diameter bits incorporate a reduced shank (either 1/4", 3/8" or 1/2") to fit into a standard drill chuck. Some bits have 3 flats on the shank to prevent spinning under high torque loads. Others have 1/4" hex shanks for use in a portable drill with a hex bit holder.

Angle between the side-cutting edge and the projected side of the tool shank or holder, which leads the cutting tool into the workpiece.

*Note that most standard drill bits can be used in automated machinery (with the proper adapter) and most boring machine bits can be used in a portable drill or drill press (assuming the chuck is big enough). We have only organized them in this fashion to make selection easier.

Also, Graham recommended the tool have a PVD coating, not a CVD coating, when machining a high-temperature alloy with a hardness of greater than 32 HRC because PVD is usually thinner and therefore better maintains a tool’s edge definition. He added that PVD coatings are also preferred because of their resistance to wear, BUE and cratering—all common failure modes when machining nickel-base alloys.

Cutting tool materials based on aluminum oxide and silicon nitride. Ceramic tools can withstand higher cutting speeds than cemented carbide tools when machining hardened steels, cast irons and high-temperature alloys.

ISOturning insertnomenclature

Tip Styles: The cutting tip of a countersink drill consists of two or more flat blades extending from the center drill to the outer edge. Countersinks are made with angles from 60 to 120 degrees but those on our site are typically 82 or 90 degrees. For wood use many times the manufacturer does not specify the angle.

A deep hole drilling machine can provide much better results in both drilling performance and accuracy. High-performance gundrilling machines can drill beyond ...

Angle between the insert’s side-cutting edge and the line perpendicular to the milling cutter’s axis of rotation. Approach angle, which is also known as cutting edge angle, is used with metric units of measurement. See lead angle.

Workholders and machine tools must be rigid to apply round inserts because the tool’s radius, relatively large compared with a straight-edged insert, means more contact area and therefore more cutting pressure.

Oct 16, 2017 — My research into this situation led me to believe this is a common problem area with the flatheads and if unchecked it can lead to erosion of ...

Flute Styles: Some counterbores do not have flutes (except for the center drill) and simply shave away the material, others are designed similar to a twist drill with no tip angle and a replaceable center drill.

Their greater strength makes round inserts excellent at rough turning the scale present on forged and cast workpieces. Their strength also makes them less prone to chipping and breakage than other types of inserts.

So aerospace and oil and gas companies have many of their parts made from nickel-base alloys (heat-resistant superalloys). To turn these materials, which include Inconel, Hastelloy, Waspaloy and Monel, manufacturers should have their eyes firmly fixed on that humble cutting tool, the round insert.

The Lollipop from Sphinx is for machining undercuts, deburring and multiple-axis machining. Lollipop cutters, also known as undercutting endmills, can be ...

Round inserts can be worthwhile, though, because they’re strong and can be fed at higher rates than other types of inserts, more than making up for their disadvantages in certain applications.

Round inserts for turning high-nickel alloys may be CVD or PVD coated depending on the tool’s performance characteristics relative to a particular alloy, such as the tool’s main failure mode.

Conditioning of the cutting edge, such as a honing or chamfering, to make it stronger and less susceptible to chipping. A chamfer is a bevel on the tool’s cutting edge; the angle is measured from the cutting face downward and generally varies from 25° to 45°. Honing is the process of rounding or blunting the cutting edge with abrasives, either manually or mechanically.

General Description: Specialty drill bits are any bit that doesn't fall into one of the four categories above. These bits include:

1. Permanently damaging a metal by heating to cause either incipient melting or intergranular oxidation. 2. In grinding, getting the workpiece hot enough to cause discoloration or to change the microstructure by tempering or hardening.

General Description: Counterbore drill bits create a flat bottom blind hole with a smaller diameter center hole that penetrates through the material. The purpose of a counterbore is usually to conceal the fastener head (by covering the hole) or provide a recess to prevent the fastener from protruding above the surface of the material being drilled. Counterbores on our site are designed for use in wood or plastics and are not intended for counterboring steel.

A round insert can be fed up to 20 percent faster into a workpiece than other types of inserts because the tool has the strongest geometry of any insert shape.

Round inserts can operate at higher feed rates because they have the strongest geometry. “The larger the included angle of the cutting edge, the more inherent strength you have in that insert,” said Frank Battaglia, staff engineer–global machining technology with Kennametal Inc., Latrobe, Pa.

About the Author: Joseph L. Hazelton is a freelance writer with 8 years of experience writing and editing articles for metalworking publications.

Shank Styles: Counterbores for use in hand-held drills typically clamp on to a standard twist drill and therefore have a straight shank the same diameter as the center drill. Counterbores for use in automated machinery have fixed diameter (usually 1/2" or 10mm) shanks, threaded shanks, or specialty shanks designed for certain machines.

Our free speed and feed calculator can be used to determine the spindle speed (RPM) and feed rate (IPM) for the specified cutting conditions, as well as the ...

Greenleaf’s Hill added that a negative rake angle is particularly suitable for interrupted turning. “When it engages the workpiece, the majority of that chip or swarf impacts that top surface of the insert, which is the strongest area of that cutting tool,” he said. “So, in interrupted turning you’re now presenting the strongest area of your cutting tool to that abusive situation.”

Ceramics can run at such high speeds because their melting temperatures are much higher than the melting points of any metal they would cut. For example, a whisker-reinforced ceramic round insert—that is, a tool consisting of an aluminum-oxide matrix with silicon-carbide crystals—can have a melting temperature of slightly more than 2,000° C. Given such high melting points, ceramic inserts resist deformation and softening at very high temperatures.

Some aerospace companies still prefer uncoated inserts, though, because they worry about the coating contaminating parts during manufacture. “Obviously, they don’t want anything that’s going to erode or deform that structure, however minute it is,” said ATI Stellram’s Gardner. “There have been many studies about the coating diffusion into the parent material. We’ve never found that diffusion into the material with a PVD coat. That said, some manufacturers of aero engine components still like to use uncoated inserts.”

Included angle at the point of a twist drill or similar tool; for general-purpose tools, the point angle is typically 118°.

These structures are determined by the way the metal atoms pack together in the most efficient way to minimise empty space. ... This is due to their atomic masses ...

Machining vertical edges of workpieces having irregular contours; normally performed with an endmill in a vertical spindle on a milling machine or with a profiler, following a pattern. See mill, milling machine.

Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.

Shank Styles: Countersinks for use in hand-held drills typically clamp on to a standard twist drill and therefore have a straight shank the same diameter as the center drill (some have 1/4" hex shanks for hand use in a bit holding screwdriver). Countersinks for use in automated machinery have fixed diameter (usually 1/2" or 10mm) shanks, threaded shanks, or specialty shanks designed for certain types of machines.

“Another key issue is a coating that will adhere to the edge line for a long period of time,” Tisdall said. “What you don’t want to do is finish a large aerospace component and find out that you’ve lost size because your coating has broken down halfway through the cut. You either are going to have to do a spring pass or you might scrap a part, and you are talking about a lot of money.”

Despite some major advantages, round inserts may be unattractive to manufacturers for several reasons. One is they can’t machine small-radius corners. For example, a 0.5 "-dia. round insert can’t turn a 90° corner with a radius of 0.004 ". Its smallest corner radius is 0.5".

Engagement of a tool’s cutting edge with a workpiece generates a cutting force. Such a cutting force combines tangential, feed and radial forces, which can be measured by a dynamometer. Of the three cutting force components, tangential force is the greatest. Tangential force generates torque and accounts for more than 95 percent of the machining power. See dynamometer.

ATI Stellram  (615) 641-4200www.stellram.com Greenleaf Corp. (800) 458-1850www.greenleafcorporation.com Kennametal Inc. (800) 446-7738www.kennametal.com Sandvik Coromant Co. (800) 726-3845www.coromant.sandvik.com/us Seco Tools (800) 832-8326www.secotools.com

General Description: Twist drill bits are the most common type of drill bit and are used for everyday drilling in all types of material. They are also the most confusing due to the sheer number of size, tip, and material specifications.

According to Graham, producers of parts for oil and gas applications typically prefer negative or neutral rake angles on their round inserts because the angles provide extra strength. Those companies also like the inserts to have strong, heavy chip grooves.

Based in Milwaukee, WI – Gorilla Mill has over 30 years experience manufacturing the best carbide drills, end mills and cutting tools in the industry.

Angle of inclination between the face of the cutting tool and the workpiece. If the face of the tool lies in a plane through the axis of the workpiece, the tool is said to have a neutral, or zero, rake. If the inclination of the tool face makes the cutting edge more acute than when the rake angle is zero, the rake is positive. If the inclination of the tool face makes the cutting edge less acute or more blunt than when the rake angle is zero, the rake is negative.

To turn a pocket, Tisdall recommends trochoidal turning over plunging and turning to reduce potential damage to the round insert or part. In plunging and turning, an insert endures stress when plunged into a workpiece and moved across the material to turn it until it reaches where the pocket’s wall will be. The stress can lead to chipping and possibly catastrophic failure.

Flute Styles: Some countersinks do not have flutes (except for the center drill) and simply shave away the material, others are designed similar to a twist drill with a replaceable center drill.

May 12, 2023 — To get started in becoming a QuickBooks ProAdvisor, you must first sign up for the Online QuickBooks Accountant program. Registration is free.

Tisdall also described a “roll-in method” of plunging and turning. A programming technique, the method includes a radius as an insert comes out of a plunge. “It’s another way of keeping the insert engaged with the workpiece without doing a sudden movement in a different direction. Let’s say you’re plunging in Z, and then you go to the X-axis and make a move in that axis. There’s a lot of stress on the insert. Here, we’re making use of a radius to basically make the process gentler on the insert.”

Insertclearance angle

Jul 23, 2012 — The one you have pictured is great for light duty, but a little underpowered for extended use or larger drill bits. It's hard to beat the Makita ...

The tool’s inability to create small-radius corners leads many parts manufacturers, and their programmers, to apply other insert shapes. “The CNMG is pretty much the first choice for any programmer because of the combination of flexibility and edge strength,” said Bill Tisdall, development specialist manager for toolmaker Sandvik Coromant Co., Fair Lawn, N.J. “You can OD turn, you can face, you can out-copy, you can turn to a square shoulder. With a round insert, you can’t turn to a shoulder. You can do all the other things.” (Out-copying is machine movement that combines a Z-axis movement toward the chuck with an X-axis movement away from the center line of the workpiece.)

Battaglia cautioned, though, that a ceramic round insert can still wear out if run too fast. Also, he recommended ceramic inserts’ cutting edges receive a chamfer, also known as a T-land or radius hone. He said the typical T-land has a width of 0.002 " to 0.004 " on the rake surface and an angle of 20° to 25°. “When you have a sharp-edged insert, that edge is susceptible to crack propagation,” he said. “When you add an edge preparation, you tend to direct those cutting forces more into the bulk of the material, so it makes it more difficult for a crack to propagate and lead to chipping of the cutting edge.”

Joseph L. Hazelton is a freelance writer with multiple years of experience writing and editing articles for metalworking publications.

Machining grooves and shallow channels. Example: grooving ball-bearing raceways. Typically performed by tools that are capable of light cuts at high feed rates. Imparts high-quality finish.

Finally, a round insert can more easily damage a workpiece than a straight-edged insert. A round insert has a relatively large radius compared with a straight-edged insert, which has small radii at its corners. A large radius means more contact surface, which results in higher cutting forces. “This can be detrimental when applied in weak setups, extended tooling or on workpiece features that have a thin cross section,” said Dale Hill, applications engineer for toolmaker Greenleaf Corp., Saegertown, Pa. Detrimental effects include workpiece deflection and vibration.

LM Brown · 1971 · 745 — As a preliminary to describing the dislocation distribution in deformed alloys of copper containing a small volume fraction of SiO2 particles, the stress ...

Moreover, round inserts aren’t well suited to machining complicated profiles, like undercuts, and can’t create profiles not present in their geometry, according to Don Graham, manager of turning products for toolmaker Seco Tools Inc., Troy, Mich.

Cutting tool material consisting of polycrystalline cubic boron nitride with a metallic or ceramic binder. PCBN is available either as a tip brazed to a carbide insert carrier or as a solid insert. Primarily used for cutting hardened ferrous alloys.

Martin Gardner, global product manager—turning, threading and grooving for toolmaker ATI Stellram, La Vergne, Tenn., agreed. He suggested an RCMT insert, which has a 7° rake angle, for this application. “That’s probably the most popular insert we see in these types of applications,” he said. “They’re used for profiling and for narrow grooves.”

Substances having metallic properties and being composed of two or more chemical elements of which at least one is a metal.

Depressions formed on the face of a cutting tool caused by heat, pressure and the motion of chips moving across the tool’s surface.

High-temperature (1,000° C or higher), atmosphere-controlled process in which a chemical reaction is induced for the purpose of depositing a coating 2µm to 12µm thick on a tool’s surface. See coated tools; PVD, physical vapor deposition.

With dozens of drill bit types and thousands of sizes to choose from we'll explain the differences and help you choose the right drill bit for your application.

A parts manufacturer has to consider whether to apply a round insert with a negative geometry, a neutral one or a positive one for machining a nickel-base alloy.

Carbideinsertidentification chart PDF

1. Spreading of a constituent in a gas, liquid or solid, tending to make the composition of all parts uniform. 2. Spontaneous movement of atoms or molecules to new sites within a material.

However, a negative rake angle tends to create greater cutting force, which may not be right for a particular application. Hill recommends the correct geometry for the job. “Use negative whenever possible for strength and economy—negative tools are generally double sided, allowing for more cutting edges. Use positive geometry if surface finish, tool force or built-up edge is a concern.”

Tip Styles: The cutting tip of a counterbore drill consists of one or more flat blades extending from the center drill to the outer edge. Counterbores are available with or without spurs (teeth) at the outer diameter of the bit. Counterbores with spurs on the outer edge prevent chipping and splintering on wood or laminated surfaces.

Image

According to Graham, a tool material exists for machining at even higher speeds than ceramics. “With CBN, you can run 1,000 sfm.”

Trochoidal turning, however, involves smaller DOCs. “It’s a light plunge into a turn,” Tisdall said. “With a lighter DOC, you don’t have as much engagement of the insert when you come up to that wall.”

Graham estimated that round inserts can be fed 20 percent faster than other types of inserts, depending on the round tool’s chipbreaker, which can be designed for different feed rates. Graham cited a chipbreaker with a neutral land and relatively wide groove as an example, saying that a round insert can take a heavier feed rate than one with a positive rake and narrow groove width. (See recommended feeds and speeds chart on page 39.)

Tangential velocity on the surface of the tool or workpiece at the cutting interface. The formula for cutting speed (sfm) is tool diameter 5 0.26 5 spindle speed (rpm). The formula for feed per tooth (fpt) is table feed (ipm)/number of flutes/spindle speed (rpm). The formula for spindle speed (rpm) is cutting speed (sfm) 5 3.82/tool diameter. The formula for table feed (ipm) is feed per tooth (ftp) 5 number of tool flutes 5 spindle speed (rpm).

Consequently, parts manufacturers have to maximize machine tool and workholding rigidity if they want to successfully apply round inserts.

Crystal manufactured from boron nitride under high pressure and temperature. Used to cut hard-to-machine ferrous and nickel-base materials up to 70 HRC. Second hardest material after diamond. See superabrasive tools.

Carbideinsertsize chart

“Typically in aerospace, they will produce massive forgings,” Graham said. A 40 "-dia. ring that’s 0.5 " thick × 2 " wide may have started as a 48 "-dia. ring with a 6 " thickness and a 6 " width. “They remove massive amounts of material to produce that ring. That’s where a round insert is very useful because you can hog out a lot of material in an aggressive fashion,” Graham said.

Materials: General purpose twist drills for use in portable drills are available in different grades of high speed steel as well as cobalt steel and solid carbide. Twist drill bits for automated machinery are available in carbon steel, high speed steel, carbide tipped, and solid carbide.

Shank Styles: Most large flat bottom boring bits have a fixed size hexagonal shank. The hex shank prevents the bit from spinning in the chuck under excessive loads.

Besides a round insert’s geometry, part makers for aerospace and oil and gas applications must consider whether they want a coated tool.

General Description: Flat bottom boring bits are similar to counterbores but do not include a center drill. These bits are designed to drill flat bottom blind holes for European style hinges, etc. Flat bottom boring bits are also used for drilling large diameter thru-holes without the plug that is typical when using a hole saw. These thru-hole bits are used for locks, door knobs, wiring holes, etc. Flat bottom boring bits on our site are designed for use in wood or plastics and are not intended for use in steel.

Round inserts may be underutilized in some manufacturing sectors, but the aerospace and oil and gas industries shouldn’t be among them.

However, Graham said inserts should have CVD coatings when they’re machining softer superalloys, like Inconel 600, because the predominant failure mode is cratering and a thicker coating better protects against cratering.

Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

Given their strength, it shouldn’t be surprising that round inserts need to be applied carefully to workpieces, even to high-nickel alloys.

He added, though, that carbide inserts are sometimes needed when a machine tool’s limitations or a part’s fixtures require running at lower speeds or during final finishing of critical aircraft components. “Often carbide is explicitly specified to be run at a low speed so that any possible damage or ‘white layer’ formation on the part surface is avoided,” Battaglia explained.

Process of both external (e.g., thread milling) and internal (e.g., tapping, thread milling) cutting, turning and rolling of threads into particular material. Standardized specifications are available to determine the desired results of the threading process. Numerous thread-series designations are written for specific applications. Threading often is performed on a lathe. Specifications such as thread height are critical in determining the strength of the threads. The material used is taken into consideration in determining the expected results of any particular application for that threaded piece. In external threading, a calculated depth is required as well as a particular angle to the cut. To perform internal threading, the exact diameter to bore the hole is critical before threading. The threads are distinguished from one another by the amount of tolerance and/or allowance that is specified. See turning.

As good as they are, though, parts manufacturers may find coated, carbide round inserts insufficient for their use. “Their disadvantage is that they will be significantly limited in speed capability compared to ceramic cutting tools,” Kennametal’s Battaglia said.

The carbide’s structure is the first consideration. Gardner recommended a submicrograin substrate for continuous cutting without vibration. Seco Tools’ Graham agreed. “The micrograin provides increased abrasion resistance as well as deformation resistance,” he said. “The latter is extremely important when you’re machining nickel-base materials. They generate a lot of heat and pressure [when cut].” A steel, for example, softens when it gets red hot, Graham noted, whereas a superalloy retains its strength and hardness when red hot. “So even when it’s red hot, it’s still putting a lot of pressure on the insert.”

ISO carbideInsertchart

Image

Nonetheless, Tisdall prefers a CVD coating when machining superalloys with a round insert. “The strength and chip thinning effect of a round geometry makes up for the inherent weakness of the edge line,” he said. “When machining superalloys with an insert with a point angle—CNMG, DNMG or VNMG in combination with a small lead angle tool—a PVD grade is preferable.”

Flute Styles: Large flat bottom boring bits do not have flutes, they consist of only the cutting surface and the chips remain in the hole until the bit is removed.

Image

He compared inserts’ different included angles; the 100°, 90°, 80° and 60° corners of various inserts, all the way down to a VNG-insert, which has a 35° angle. “The cross-sectional area, going from one side of that insert to the other, gets smaller and smaller as you go down in that angle,” Battaglia said. “With a round insert, it’s really just maximized to the point where you have the largest cross-sectional area going across from one side of the cutting edge to the other side.”

Measurement of the total angle within the interior of a workpiece or the angle between any two intersecting lines or surfaces.

1. Permanently damaging a metal by heating to cause either incipient melting or intergranular oxidation. 2. In grinding, getting the workpiece hot enough to cause discoloration or to change the microstructure by tempering or hardening.

In a race, carbide—even a coated, submicrograin carbide—would be chasing ceramic at a long distance. “Say we take our best-case scenario of carbide—300 sfm on typical Inconel 718,” Greenleaf’s Hill said, adding that that speed involved light finishing, not roughing. “Ceramics are capable of running 800 to 900 sfm.”

Drill bits are generally classified as Twist Drill, Counterbore, Countersink, Flat Bottom Boring, and Specialty. On our web site we have divided these into two categories:

Sandvik Coromant’s Tisdall generally prefers that round inserts have a CVD coating in most applications. “A CVD grade will provide better tool life and higher-speed capability because the coating is typically much thicker.” He said, however, that a CVD coating is more prone to notch wear than a PVD coating because of the CVD process itself. According to Tisdall, the CVD process creates an eta phase in an insert’s carbide matrix, depleting the matrix of its cobalt binder, which acts to resist notch wear. Also, depleting the matrix of its binder weakens the carbide substrate.

Workholding device that affixes to a mill, lathe or drill-press spindle. It holds a tool or workpiece by one end, allowing it to be rotated. May also be fitted to the machine table to hold a workpiece. Two or more adjustable jaws actually hold the tool or part. May be actuated manually, pneumatically, hydraulically or electrically. See collet.

Size Designations: Common twist drills for use in portable drills, etc. are available in fractional inch, wire sizes, letter sizes, and metric decimal millimeter. Twist drills for use in automated machinery are only available in fractional inch and decimal millimeter. See our Drill Bit Size Chart for the breakdown of fractional, letter, and wire sizes.

For example, a round insert’s maximum DOC shouldn’t be more than 25 percent of the tool’s diameter. At more than 25 percent, the tool will have too much contact area with the workpiece, resulting in too much pressure and heat, Gardner said. “We’re going to just blow the insert away,” he added, “or we’re going to damage the component.”

Tool-coating process performed at low temperature (500° C), compared to chemical vapor deposition (1,000° C). Employs electric field to generate necessary heat for depositing coating on a tool’s surface. See CVD, chemical vapor deposition.

Length Designations: The length of a twist drill has much to do with its rigidity - a shorter bit will be stronger and less likely to wander or break but may not have the reach needed for all jobs. Twist drill bits for use in automated machinery have an actual length specification (e.g. 4-1/2") while most (not all) twist drills for use in portable drills are graduated length and use a name to specify the length range:

Moreover, their strength and related long life mean round inserts are well suited to turning the large workpieces often manufactured by aerospace and oil and gas companies. “The round insert provides the best tool life and strength of any shape of an insert, so when you have a very large length of cut, you’re able to machine that full length with a round insert,” said Sandvik Coromant’s Tisdall. “With an angled insert, you’re typically going to get less tool life. You’d have to index the tool midcut.”

Time saved via higher feed rates means money saved. “The amount of money you can save [by using round inserts] over the life of running an insert is phenomenal,” Tisdall said, adding that actual cost savings depend on a shop’s overhead, annual number of components and reduction of a part number’s process time.