2024 Fall - 2025 Winter Promo Pack - hot sales milling tool insert
Coolant should be plentiful in these operations and running at a higher concentration to aid in lubricity. In some deep hole operations, oil is recommended.
Define 'MARTENSITE'. See more meanings of 'MARTENSITE' with examples.
Nickel is ductile and can be made by the conventional processing methods into cast, P/M, and various wrought products: bar/wire, plate/sheet, and tube. Commercially pure nickel has moderately high values of melting temperature (1453°C), density (8.902 g/cm3), and elastic modulus (204 GPa). It is ferromagnetic, with a Curie temperature of 358°C (676°F) and good electrical (25% IACS) and thermal conductivity (82.9 W/m K, or 48 Btu/ft h °F). Elemental nickel is used principally as an alloying element to increase the corrosion resistance of commercial iron and copper alloys; only about 13% of annual consumption is used in nickel-base alloys. Approximately 60% is used in stainless steel production, with another 10% in alloy steels and 2.5% in copper alloys. Nickel is also used in special-purpose alloys: controlled expansion, electrical resistance, magnetic, and shape memory alloys. Effects of Alloying Elements in Nickel Alloys Nickel has an face-centered cubic crystal (fcc) structure, to which it owes its excellent ductility and toughness. Because nickel has extensive solid solubility for many alloying elements, the microstructure of nickel alloys consists of the fcc solid-solution austenite (γ) in which precipitate particles can form. Nickel forms a complete solid solution with copper and has nearly complete solubility with iron. It can dissolve about 35% Cr, about 20% each of molybdenum and tungsten, and about 5 to 10% each of aluminum, titanium, manganese, and vanadium. Thus, the tough, ductile fcc matrix can dissolve extensive amounts of elements in various combinations to provide solution hardening as well as improved corrosion and oxidation resistance. The degree of solution hardening has been related to the atomic size difference between nickel and the alloying element, and therefore the ability of the solute to interfere with dislocation motion. Tungsten, molybdenum, niobium, tantalum, and aluminum, when aluminum is left in solution, are strong solution hardeners, with tungsten, niobium, tantalum, and molybdenum also being effective at temperatures above 0.6 T m (T m = melting temperature), where diffusion-controlled creep strength is important. Iron, cobalt, titanium, chromium, and vanadium are weaker solution-hardening elements. Aluminum and titanium are usually added together to form the age-hardening precipitate, Ni3(Al, Ti). In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Another factor in deep hole drilling is the hole quality. Straightness especially can be an issue as long drills tend to “wander,” particularly if feed rates are pushed excessively.
If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Your shop’s set-up and resources may limit your options for deep hole drilling. Let’s look at the most-common choices for deep hole tooling and their fundamental benefits and limitations:
Long, carbide drills feed into ~2xD piloted holes at little-to-no spindle speed (under 500RPM) until the drill point is fully inside. Only at that time is the coolant and spindle increased to the recommended speed and feed. The drill’s speed is again slowed as it retracts from the finished hole.
Total Materia is the leading materials information platform, providing the most extensive information on metallic and non-metallic material properties and other material records.
ICG-20660/L Datasheet ... The ICG-20660/L is a 6-axis MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, in a small 3 × 3 × 0.75 mm (16 ...
Having a solid set-up in both workholding and toolholding, along with a reliable machine tool, is critical to reduce runout (TIR) and ensure hole straightness and concentricity.
The PFX HSS-E extra-long series (A976, A977, A978) from Dormer-Pramet offers up to 25xD deep drilling without the typical peck cycle, in most materials, saving valuable cycle time at an economical price.
Nickel alloyexamples
However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Nickel alloyuses
Worn tools can be retuned for reconditioning where the original manufacturing specifications and coating are applied to the used tool, resulting in “good-as-new” productivity.
The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Effects of Alloying Elements in Nickel Alloys Nickel has an face-centered cubic crystal (fcc) structure, to which it owes its excellent ductility and toughness. Because nickel has extensive solid solubility for many alloying elements, the microstructure of nickel alloys consists of the fcc solid-solution austenite (γ) in which precipitate particles can form. Nickel forms a complete solid solution with copper and has nearly complete solubility with iron. It can dissolve about 35% Cr, about 20% each of molybdenum and tungsten, and about 5 to 10% each of aluminum, titanium, manganese, and vanadium. Thus, the tough, ductile fcc matrix can dissolve extensive amounts of elements in various combinations to provide solution hardening as well as improved corrosion and oxidation resistance. The degree of solution hardening has been related to the atomic size difference between nickel and the alloying element, and therefore the ability of the solute to interfere with dislocation motion. Tungsten, molybdenum, niobium, tantalum, and aluminum, when aluminum is left in solution, are strong solution hardeners, with tungsten, niobium, tantalum, and molybdenum also being effective at temperatures above 0.6 T m (T m = melting temperature), where diffusion-controlled creep strength is important. Iron, cobalt, titanium, chromium, and vanadium are weaker solution-hardening elements. Aluminum and titanium are usually added together to form the age-hardening precipitate, Ni3(Al, Ti). In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
The pilot drill point angle should also be greater than, or equal to the drill point that follows. This ensures the corners from the long drill aren’t engaged with the material prematurely, which could result in catastrophic failure.
The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
bit,drill,high-speed,steel,tool,tools,twist,
The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Nickel alloyproperties
botek is the world market leader in single-flute gundrills. Their solid-carbide Type 113 series was designed as an alternative to carbide twist drills.
The phrase molon labe (Ancient Greek μολὼν λαβέ molṑn labé; reconstructed Ancient Greek pronunciation [molɔːn labé]; Modern Greek pronunciation [moˈlon...
The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
If performance is your goal and your shop has a reliable, secure set-up, this is the most efficient option for deep hole drilling. Carbide, coolant-through drills run to depths of ~50xD, without pecks and at feed rates 50-100% greater than the other options. These drills are coated and have polished flutes to improve chip flow.
Nickel alloy compositionpercentage
Choose from our selection of extra-long drill bits, including high-speed steel drill bits, cobalt steel drill bits, and more. In stock and ready to ship.
Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Nickelsteelcompositionpercentage
Elemental nickel is used principally as an alloying element to increase the corrosion resistance of commercial iron and copper alloys; only about 13% of annual consumption is used in nickel-base alloys. Approximately 60% is used in stainless steel production, with another 10% in alloy steels and 2.5% in copper alloys. Nickel is also used in special-purpose alloys: controlled expansion, electrical resistance, magnetic, and shape memory alloys. Effects of Alloying Elements in Nickel Alloys Nickel has an face-centered cubic crystal (fcc) structure, to which it owes its excellent ductility and toughness. Because nickel has extensive solid solubility for many alloying elements, the microstructure of nickel alloys consists of the fcc solid-solution austenite (γ) in which precipitate particles can form. Nickel forms a complete solid solution with copper and has nearly complete solubility with iron. It can dissolve about 35% Cr, about 20% each of molybdenum and tungsten, and about 5 to 10% each of aluminum, titanium, manganese, and vanadium. Thus, the tough, ductile fcc matrix can dissolve extensive amounts of elements in various combinations to provide solution hardening as well as improved corrosion and oxidation resistance. The degree of solution hardening has been related to the atomic size difference between nickel and the alloying element, and therefore the ability of the solute to interfere with dislocation motion. Tungsten, molybdenum, niobium, tantalum, and aluminum, when aluminum is left in solution, are strong solution hardeners, with tungsten, niobium, tantalum, and molybdenum also being effective at temperatures above 0.6 T m (T m = melting temperature), where diffusion-controlled creep strength is important. Iron, cobalt, titanium, chromium, and vanadium are weaker solution-hardening elements. Aluminum and titanium are usually added together to form the age-hardening precipitate, Ni3(Al, Ti). In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
TAP FEEDS & SPEEDS · Tapping Formulas and Calculations · Recommended Feeds and Speeds (SFM) into Material ...
Walter-Titex is globally recognized as a leader in High-Performance drilling and offers one of the most comprehensive deep hole drilling programs in the market. Dialling-in optimum cutting conditions is straight-forward with their GPS software. Besides detailed cutting data, anticipated tool life— measured in holes, is also provided. It even takes into account regrinds.
Sandvik Coromant has placed an emphasis on solid, round tooling in recent years through the introduction of upgraded geometries, substrates, and coatings.
The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Having a knowledgeable and resourceful metalworking distributor can eliminate the challenges that come with deep hole drilling. If you would like to improve your drilling processes, please reach out to the Triumph team today!
All this information is available in Total Materia Horizon, the ultimate materials information and selection tool, providing unparalleled access to over 540,000 materials as well as, curated and updated reference data.
C-mount double male thread rings used in optics and photonics applications are available at Edmund Optics.
These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Nickel alloy compositionpdf
Twist drill manufacturers typically add extra margins to their drills to stabilize the tool, however, excessive contact by the margins can affect surface finish and even work harden some materials.
Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Hydraulic chucks are suitable for HSS tools and shrink holders are ideal for carbide. Regardless of the toolholder choice, ensure TIR is minimal.
WIDIA-Circle Solid Carbide Tooling. 32 ... Milling tool with replaceable insert · End mill · Coated milling cutter · Cast ...
There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Nickel forms a complete solid solution with copper and has nearly complete solubility with iron. It can dissolve about 35% Cr, about 20% each of molybdenum and tungsten, and about 5 to 10% each of aluminum, titanium, manganese, and vanadium. Thus, the tough, ductile fcc matrix can dissolve extensive amounts of elements in various combinations to provide solution hardening as well as improved corrosion and oxidation resistance. The degree of solution hardening has been related to the atomic size difference between nickel and the alloying element, and therefore the ability of the solute to interfere with dislocation motion. Tungsten, molybdenum, niobium, tantalum, and aluminum, when aluminum is left in solution, are strong solution hardeners, with tungsten, niobium, tantalum, and molybdenum also being effective at temperatures above 0.6 T m (T m = melting temperature), where diffusion-controlled creep strength is important. Iron, cobalt, titanium, chromium, and vanadium are weaker solution-hardening elements. Aluminum and titanium are usually added together to form the age-hardening precipitate, Ni3(Al, Ti). In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Elemental nickel is used principally as an alloying element to increase the corrosion resistance of commercial iron and copper alloys; only about 13% of annual consumption is used in nickel-base alloys. Approximately 60% is used in stainless steel production, with another 10% in alloy steels and 2.5% in copper alloys. Nickel is also used in special-purpose alloys: controlled expansion, electrical resistance, magnetic, and shape memory alloys.
Nickel alloy compositionand properties
Double-sided, 35° rhombic insert, positive rake angle that varies along the edge to negative in order to prevent chipping. Special design reduces cratering.
It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Privacy Policy | Sitemap Additional accessible formats for this information are available upon request. Contact Us for more information.Copyright © 2022 Triumph Tool Ltd. All Rights Reserved.
The CoroDrill® 865 has been optimized for deep hole drilling (up to 30xD) in cast iron, steel and aluminum— making it ideal for automotive applications. The design includes a flute profile to improve chip formation, while maintaining strength and produce precise, consistent holes even on an incline.
Peck drilling is usually recommended beyond 5xD to help evacuate the chips, provide hole straightness, and maintain concentricity. Depths and number of pecks are based on the drill diameter and work material. Care is needed to avoid flushing chips back into the hole upon peck retraction, and therefore drills should not fully retract from the hole when pecking.
While there is no defined depth measurement at which point a hole becomes “deep,” it’s commonly identified at 10 times the diameter of the drill (10XD) and greater.
The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Beginning with effective chip formation at the cutting edge, drill manufacturers create point geometry to reduce cutting forces and shear the material into manageable pieces. Ideally, the drill point combined with appropriate cutting conditions will create small, tight pieces‒ that with deep, polished flutes and sufficient coolant‒ will evacuate easily.
Pilot holes are almost always recommended in deep hole drilling and act as a guide for the long drill that follows. The pilot drills to a ~2xD depth and should be manufactured to a plus tolerance‒ ensuring a slightly larger hole but remaining within the hole tolerance. (Example ø6.02mm pilot for a ø6mm hole)
Tungsten, molybdenum, niobium, tantalum, and aluminum, when aluminum is left in solution, are strong solution hardeners, with tungsten, niobium, tantalum, and molybdenum also being effective at temperatures above 0.6 T m (T m = melting temperature), where diffusion-controlled creep strength is important. Iron, cobalt, titanium, chromium, and vanadium are weaker solution-hardening elements. Aluminum and titanium are usually added together to form the age-hardening precipitate, Ni3(Al, Ti). In addition, some alloying elements can partition to γ’, affecting the interface mismatch and precipitate-coarsening kinetics as well as contributing a solution-hardening component to strength, with titanium being the most effective at room and elevated temperatures. However, titanium, niobium, and tantalum can influence mechanical properties still further by encouraging the formation of other similar types of precipitates. With higher titanium content, γ’ will transform to the hexagonal close-packed (hcp) η- phase, Ni3Ti, which has an acicular or cellular morphology. With increased amounts of niobium, γ’ transforms to the commercially important metastable body-centered tetragonal (bct) phase γ". A decrease in hardening will result if the equilibrium orthorhombic phase, Ni3Nb, is allowed to form. The actual phases precipitated and their effectiveness in hardening the micro-structure are dependent on the alloy composition, the applied heat treatments, the resulting precipitate volume fraction, and the service conditions. Carbides. Although not a carbide former, nickel dissolves many elements that readily form the carbides seen in nickel alloys (MC, M6C, M7C3, M23C6). The MC carbides (where M = W, Ta, Ti, Mo, Nb) are usually large, blocky, and undesirable. The M6C carbides (M = Mo, W) can precipitate as small platelets in the grains or as blocky particles in boundaries useful for grain control, but deleterious for ductility and stress rupture properties. The M7C3 (M = Cr) can be useful when precipitated as discrete particles, but more so are grain boundary particles of M23C6 (M = Cr, Mo, W), where they can enhance creep rupture properties. If carbides are allowed to agglomerate or form grain-boundary films during heat treatment or in service at elevated temperatures, they can seriously impair ductility and cause embrittlement. As in stainless steels, precipitation of chromium carbides at boundaries can lead to intergranular corrosion due to the chromium-depleted zone alongside the grain boundary becoming anodic to the rest of the grains. This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
These deep hole drills are straight-fluted for added strength and feature coolant-through the tool. Gundrills have the largest range of diameters and lengths available. While larger diameters and lengths require special-purpose machine tools to run, smaller diameters can effectively operate on mills and even lathes.
Nickel alloy compositionchart
Deep hole drilling can be a tedious and difficult process, but with the right tooling and technique, it doesn’t have to be.
The most challenging aspect of drilling deep holes is effective chip formation and evacuation, especially in malleable materials. Chip packing is the most common culprit behind tool breakage in this process.
This grain-boundary sensitization is controlled in several ways: by avoiding the chromium-carbide aging temperature range (425 to 760°C) during processing, with stabilization heat treatments to tie up carbon with more stable carbide formers (niobium, tantalum, titanium), and by reducing the carbon level in the base alloy. Nickel alloys Nickel is alloyed to extend the good corrosion resistance and good heat resistance of elemental nickel. Even with extensive amounts of alloying elements, the tough, ductile fcc austenitic matrix is preserved. It is convenient to describe nickel alloys by grouping them into their two broad application areas: corrosion resistance, especially in aqueous environments, and heat resistance. Naturally, this artificial separation should not be considered a rigid barrier as the corrosion-resistant alloys have good strength above room temperature and the heat-resistant alloys have good corrosion resistance. The unique, special-property alloys, many of which are also used for their good corrosion and heat resistance as well as high strength, are described separately. Corrosion-Resistant Nickel Alloys. The commercially pure nickel grades, Nickel 200 to 205, are highly resistant to many corrosive media, especially in reducing environments, but also in oxidizing environments where they can maintain the passive nickel oxide surface film. They are used in the chemical processing and electronics industries. They are hot worked at 650 to 1230 °C, annealed at 700 to 925 °C, and are hardened by cold working. For processed sheet, for example, the tensile properties in the annealed condition (460 MPa, tensile strength; 148 MPa, yield strength; and 47% elongation) can be increased by cold rolling up to 760 MPa tensile strength, 635 MPa yield strength, and 8% elongation. Because of its nominal 0.08% C content (0.15% max), Nickel alloy 200 (UNS No 2200) should not be used above 315°C, since embritlement results from the precipitation of graphite in the temperature range 425 to 650°C. Higher-purity nickel is commercially available for various electrical applications. The low-alloy nickels. These alloys contain 94% min Ni. The 5% Mn solid-solution addition in Nickel 211 protects against sulfur in service environments. As little as 0.005% S can cause liquid embrittlement at unalloyed nickel grain boundaries in the range between 640 and 740°C. Duranickel, alloy 301 (Ni-4.5Al-0.6Ti), offers the corrosion resistance of commercially pure nickel with the strengthening provided by the precipitation of γ’. There is sufficient alloying additions in alloy 301 to lower the Curie temperature, making the alloy weakly ferromagnetic at room temperature. The nickel-copper alloys are strong and tough, offering corrosion resistance in various environments, including brine and sulfuric and other acids, and showing immunity to chloride-ion stress corrosion. They are used in chemical processing and pollution control equipment. Capable of precipitating γ’, Ni3 (Al, Ti), with its 2.7Al - 0.6Ti alloy addition, alloy K-500 adds an age-hardening component to the good solution strengthening and work-hardening characteristics already available with the nominal 30% Cu in alloy 400. The composition of these alloys can be adjusted to decrease the Curie temperature to below room temperature. The Ni-Cr-Fe (-Mo) alloys might simply be thought of as nickel-base analogs of the iron-base austenitic stainless steel alloys, with an interchange of the iron and nickel contents. In these commercially important alloys the chromium content in general ranges from 14 to 30% and iron from 3 to 20%. With a well-maintained Cr2O3 surface film, these alloys offer excellent corrosion resistance in many severe environments, showing immunity to chloride-ion stress-corrosion cracking. They also offer good oxidation and sulfidation resistance with good strength at elevated temperatures. These nickel-rich Ni-Cr-Fe alloys have maximum operating temperatures in the neighborhood of 1200°C. The Ni-Cr-(Fe)-Mo alloys consist of a large family of alloys that are used in the chemical processing, pollution control, and waste treatment industries to utilize their excellent heat and corrosion resistance. Alloys in this commercially important family, such as C-276 and alloy 625, are made even more versatile by their excellent welding characteristics and the corrosion resistance of welded structures. The molybdenum additions to these alloys improve resistance to pitting and crevice corrosion. Aluminum improves the protective surface oxide film, and the carbide formers titanium and niobium are used to stabilize the alloys against chromium-carbide sensitization. Even with the low-level additions of aluminum and titanium to alloy 800, for example, small amounts of γ’ can form in service during exposure to elevated temperatures. The high molybdenum and silicon additions in Hastelloy B and D promote good corrosion resistance during in the presence of hydrochloric and sulfuric acids. Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
Oct 21, 2020 — A lot of cutters can be used in a vertical mill. Another use fo convex and concave cutters is mount them on a length of bar so that they can be ...
Heat-Resistant Nickel Alloys. These nickel-containing materials include nickel-, iron-nickel-, or cobalt-base alloys. They can be made by wrought and P/M methods, and also with castings produced with carefully controlled conditions to provide the desired polycrystal, or elongated (directionally solidified), or single-crystal grain structure for improved elevated-temperature mechanical properties. The majority of the nickel-base superalloys utilize the combined strengthening of a solution-hardened austenite matrix with γ’ precipitation. The iron-base Fe-Ni-Cr heat-resistant alloys are extensions of the iron-base stainless steels with higher nickel and additions of other alloying elements. Retaining the fcc iron-nickel austenite matrix, these alloys (alloys A-286 and 901, for example) are workable into various wrought forms and are capable of precipitation hardening with γ’. Alloys 903 and 909 are controlled thermal expansion Fe-Ni-Co-base alloys that are capable of age hardening with Ni3(Nb, Ti) precipitation and are designed to have high strength and low coefficient of thermal expansion for applications in gas turbine rings and seals up to 650°C. These alloys are hot worked at about 870 to 1120°C and solution heat treated at 815 to 980 °C. The standard aging treatment consists of 720 °C for 8 h, furnace cool at 55°C/h to 620°C for 8 h, followed by air-cooling. Alloy 909 in the as-hardened condition, for example, retains much of its room-temperature yield strength (1070 MPa) at 540°C, namely, 895 MPa. Specialty Nickel Alloys. Unique combinations of properties are available with other nickel-base alloys for special applications. While some of these properties are also available to some extent with alloys described above, the alloys described below were developed to promote their rather unique properties. There are many electrical resistance alloys used for resistance heating elements. They can contain 35 to 85% Ni, but invariably contain greater than 15% Cr to form an adherent surface oxide to protect against oxidation and carburization at temperatures up to 1000 to 1200°C in air.
The CoroDrill® 861 is capable of drilling to depths up to 30xD with exceptional chip control due to their unique flute geometry and smooth surface treatment. These drills feature a double offset margin, which stabilizes the drill without disproportionate material contact.
The graph below shows an example of the difference in a peck cycle between a parabolic design (on left) and a conventional flute drill (on right).