Aluminum Cutting 101: Know the Basic & Advanced ... - cutting aluminum
Parker HannifinIrvine
The calculator below shows the diameters and helix angle combinations, which yield the least vibrations for a given depth. (Read below why)
You can also use this theory in another effective way. Suppose you have a mass-production job and must constantly machine at a certain depth. If you reverse the formulas, you can find specific combinations of diameter, flute count, and helix angles to yield constant force and smooth machining. The result will be non-standard figures. But it may be well worth designing and purchasing a special cutter according to these parameters for a mass-production job.You can use our above calculator to find out the optimal milling cutter geometry for your required depth of cut.Radial Depth of Cut (Cut Width)The Radial depth of cut is also called Stepover and Cut Width. It is designated by ae or RDOC.The maximum possible radial depth is the cutter’s diameter.When the radial depth is larger or equal to the cutter’s radius, the chip load is similar to the feed per tooth.The chip load is reduced for smaller cut widths because of the chip thinning effect. (See below)Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning\( \large RCTF = \)\( \huge \frac{1}{\sqrt{1-\left ( 1 – 2 \times \frac{Ae}{D} \right )^{2}}} \)Depth Of Cut Effects On MachiningIf we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
If we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
The firm opened its first retail "ParkerStore" in Cleveland in 1993. Within 10 years, the network of stores expanded to 200 locations in the U.S. and more than 400 worldwide. ParkerStores offer a variety of Parker products, including hydraulics, automation, and hose and fitting components, at locations close to industrial product buyers.[15] Parker Hannifin systems helped control the massive replica of the Titanic in the 1997 film of the same name.[8] In 1997, the firm moved its headquarters from Cleveland to a new building in Mayfield Heights, a suburb of Cleveland.[16][17] In 1999, the company's sales reached approximately $5 billion.[18]
However, specific combinations of diameters, number of flutes, helix angles, and depth of cut yield a constant contact length independent of the rotation angle, therefore, a constant force.
In May 2022, it was announced Parker Hannifin has sold its aircraft wheel and brake division to the Bloomfield-headquartered aerospace company, Kaman Corporation for US$440 million.[32]
ParkerFluid Systems Division
Do you want to reach technical audience in the Machining Industry? Look no further! We have a massive audience of professionals, and our precise targeting ensures your message gets across exactly where it needs to be. Learn More
In August 2021, the company agreed to buy British aerospace and defense company Meggitt for £6.3 billion.[29] In July 2022, after making commitments to the UK government including increasing research and development spending in Britain, the Secretary of State for Business, Energy and Industrial Strategy approved the takeover without being referred for a full Competition and Markets Authority investigation.[30] The acquisition completed in September 2022.[31]
The FAA ordered an upgrade of all Boeing 737 rudder control systems by November 12, 2002. The firm argued that the components they supplied were not at fault, citing that the product has one of the safest records in its class, but the FAA directive went through regardless.[46] In 2016, former NTSB investigator John Cox stated that time has proven the NTSB correct in its findings that the valve was faulty, because no additional rudder-reversal incidents have occurred since Boeing's redesign.[47]
Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.
In 1982, Paul G. Schloemer replaced Patrick Parker as the company's president (although Patrick Parker remained chairman and CEO).[12] That same year, the firm entered the Mexican market. By 2008, Parker Hannifin Mexico would come to operate 11 plants in the country, seven of which made parts exclusively for the U.S. market. In 1988, the company reached $2 billion in sales.[10]
Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Notable acquisitions by the division include the Kalamazoo, Michigan-based Abex/NWL division of Pneumo Abex in 1996,[34][39] and Naples, Florida-based Shaw Aero Devices, in 2007.[35] In 2012, the company partnered with General Electric to form a 50–50 joint venture, Advanced Atomization Technologies, for producing fuel nozzles for commercial aircraft engines.[40]
We saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
In 1953, Arthur Parker's son Patrick S. Parker began working full-time at the company.[12] He rose to become its president in 1968, and served as CEO from 1971 to 1983 and as chairman from 1977 to 1999. During and after his tenure, the firm grew dramatically, with revenues rising from $197 million in 1968 to over $7 billion in 2005.[13]
Parker Hannifincompany profile
Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
In 2004, a Los Angeles jury ordered Parker Hannifin to pay US$43 million to the plaintiff families of the 1997 SilkAir Flight 185 crash in Indonesia. Parker Hannifin subsequently appealed the verdict, which resulted in an out-of-court settlement for an undisclosed amount. The Indonesian National Transportation Safety Committee (NTSC) could not determine the cause of the crash due to the near total lack of physical evidence because of the complete destruction;[43] The US National Transportation Safety Board (NTSB), however disagreed, and concluded that the crash was caused, possibly intentionally, by the pilot.[44][45]
The two parameters are interlinked, and finding the best value for each of them and the proportion between them is critical to achieving a balanced milling process (Productivity, Safe process, and tool-life)Table of ContentsAxial Depth of CutOptimal Depth CalculatorsRadial Depth of CutDepth Of Cut Effects On MachiningAxial Depth of Cut (Cut Depth)The Axia depth of cut is also called Stepdown and Cut depth.It is designated by ap or ADOC.The maximum possible depth depends mainly on the cutter’s diameter.For large diameter cutters (Above 3/4″, 20 mm), It is up to 4D (4 times the diameter).For small diameter cutters (Below 1/8″, 3 mm) it is up to 10D.Optimal Cut Depth CalculatorsThe typical (and wrong!) opinion is that the larger the depth, the more vibrations will be in the cut. However, there are optimized cut depths that create minimum vibrations.Optimal Depth of Cut CalculatorThe calculator below shows the cut depths (ap), which yield the least vibrations. (Read below why)Payment options Optimal Milling Cutter for a given DepthThe calculator below shows the diameters and helix angle combinations, which yield the least vibrations for a given depth. (Read below why)Payment options Reducing vibrations by optimizing the depth of cutThe cutting force during a milling operation depends on the depth of cut, chip load, raw material, cutting angles, and the total length of engagement between the cutting edges of the endmill and the material being cut. All the parameters stay constant throughout the operation except for cutting-edge engagement. The length of the helix, which is in contact with the material, varies as the cutter rotates.Therefore, a typical graph for the cutting forces acting on a solid carbide endmill as a function of time (or rotation angle) is like shown here.However, specific combinations of diameters, number of flutes, helix angles, and depth of cut yield a constant contact length independent of the rotation angle, therefore, a constant force.Since the diameter, helix angle, and flute count of the milling cutter can not be changed. We can find an optimal cut depth that will yield a constant cutting force:You can use our above calculator to find out this depth of cut. All the multiples of this depth will also yield constant force.When you machine with a constant force, you will get less vibrations, a better surface finish, and a longer too-life.You can also use this theory in another effective way. Suppose you have a mass-production job and must constantly machine at a certain depth. If you reverse the formulas, you can find specific combinations of diameter, flute count, and helix angles to yield constant force and smooth machining. The result will be non-standard figures. But it may be well worth designing and purchasing a special cutter according to these parameters for a mass-production job.You can use our above calculator to find out the optimal milling cutter geometry for your required depth of cut.Radial Depth of Cut (Cut Width)The Radial depth of cut is also called Stepover and Cut Width. It is designated by ae or RDOC.The maximum possible radial depth is the cutter’s diameter.When the radial depth is larger or equal to the cutter’s radius, the chip load is similar to the feed per tooth.The chip load is reduced for smaller cut widths because of the chip thinning effect. (See below)Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning\( \large RCTF = \)\( \huge \frac{1}{\sqrt{1-\left ( 1 – 2 \times \frac{Ae}{D} \right )^{2}}} \)Depth Of Cut Effects On MachiningIf we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Parker Hannifinmanufacturing
Parker-Hannifin Corporation, originally Parker Appliance Company, usually referred to as just Parker, is an American corporation specializing in motion and control technologies. Its corporate headquarters are in Mayfield Heights, Ohio, in Greater Cleveland (with a Cleveland mailing address).[3][4]
Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.
Parker HannifinDublin, GA
The cutting force during a milling operation depends on the depth of cut, chip load, raw material, cutting angles, and the total length of engagement between the cutting edges of the endmill and the material being cut. All the parameters stay constant throughout the operation except for cutting-edge engagement. The length of the helix, which is in contact with the material, varies as the cutter rotates.Therefore, a typical graph for the cutting forces acting on a solid carbide endmill as a function of time (or rotation angle) is like shown here.However, specific combinations of diameters, number of flutes, helix angles, and depth of cut yield a constant contact length independent of the rotation angle, therefore, a constant force.Since the diameter, helix angle, and flute count of the milling cutter can not be changed. We can find an optimal cut depth that will yield a constant cutting force:You can use our above calculator to find out this depth of cut. All the multiples of this depth will also yield constant force.When you machine with a constant force, you will get less vibrations, a better surface finish, and a longer too-life.You can also use this theory in another effective way. Suppose you have a mass-production job and must constantly machine at a certain depth. If you reverse the formulas, you can find specific combinations of diameter, flute count, and helix angles to yield constant force and smooth machining. The result will be non-standard figures. But it may be well worth designing and purchasing a special cutter according to these parameters for a mass-production job.You can use our above calculator to find out the optimal milling cutter geometry for your required depth of cut.Radial Depth of Cut (Cut Width)The Radial depth of cut is also called Stepover and Cut Width. It is designated by ae or RDOC.The maximum possible radial depth is the cutter’s diameter.When the radial depth is larger or equal to the cutter’s radius, the chip load is similar to the feed per tooth.The chip load is reduced for smaller cut widths because of the chip thinning effect. (See below)Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning\( \large RCTF = \)\( \huge \frac{1}{\sqrt{1-\left ( 1 – 2 \times \frac{Ae}{D} \right )^{2}}} \)Depth Of Cut Effects On MachiningIf we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
The typical (and wrong!) opinion is that the larger the depth, the more vibrations will be in the cut. However, there are optimized cut depths that create minimum vibrations.
We cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning
The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)
Thomas Williams took over the CEO role from Washkewicz in 2015.[23] In 2016, the company completed its largest acquisition to date, buying Clarcor, a filtration systems manufacturer, for $4.3 billion.[24][25] In 2019, Parker bought Lord Corporation for $3.7 billion and Kent, WA based Exotic Metals Forming Company for $1.7 billion.[26][27][28]
Therefore, a typical graph for the cutting forces acting on a solid carbide endmill as a function of time (or rotation angle) is like shown here.
Parker Hannifin acquired Commercial Intertech Corporation, a maker of hydraulic systems, in 2000.Commercial Intertech had previously acquired Oildyne Inc., a well known hydraulic manufacturer. Parker has an Oildyne division today.[19] With a cost of $366 million, this was at the time Parker Hannifin's biggest acquisition.[18]
You can use our above calculator to find out this depth of cut. All the multiples of this depth will also yield constant force.When you machine with a constant force, you will get less vibrations, a better surface finish, and a longer too-life.You can also use this theory in another effective way. Suppose you have a mass-production job and must constantly machine at a certain depth. If you reverse the formulas, you can find specific combinations of diameter, flute count, and helix angles to yield constant force and smooth machining. The result will be non-standard figures. But it may be well worth designing and purchasing a special cutter according to these parameters for a mass-production job.You can use our above calculator to find out the optimal milling cutter geometry for your required depth of cut.Radial Depth of Cut (Cut Width)The Radial depth of cut is also called Stepover and Cut Width. It is designated by ae or RDOC.The maximum possible radial depth is the cutter’s diameter.When the radial depth is larger or equal to the cutter’s radius, the chip load is similar to the feed per tooth.The chip load is reduced for smaller cut widths because of the chip thinning effect. (See below)Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning\( \large RCTF = \)\( \huge \frac{1}{\sqrt{1-\left ( 1 – 2 \times \frac{Ae}{D} \right )^{2}}} \)Depth Of Cut Effects On MachiningIf we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.
At Machining Doctor, our mission is to serve the machining industry as a comprehensive and reliable source of technical information. We strive to be the go-to destination for professionals in the niche seeking information, knowledge, and expertise. Join us and stay ahead of the curve! Learn more
On January 18, 2013, the F-35B variant of the Lockheed Martin F-35 Lightning II was grounded after the failure of a fueldraulic line in the aircraft's propulsion system that controls the exhaust vectoring system. This followed an incident two days earlier on January 16, in which the propulsion system experienced a fueldraulic failure prior to a conventional takeoff.[48] The failure was found to be a manufacturing defect by Parker Hannifin's Stratoflex division.[49][50]
The company debuted on the New York Stock Exchange in 1964, under the ticker symbol PH.[14] In 1966, the company joined the Fortune 500.[8] The company designed parts for the craft used in NASA's first crewed Moon landing in 1969.[7]
In the early 1950s, the firm's executives set a goal to make Parker, as The New York Times put it, "the General Electric of fluid power", a goal it generally achieved in the coming decades.[11] In 1957, the company purchased Hannifin, a producer of valve and cylinder products, and changed its name to Parker Hannifin.[10] Many more acquisitions followed, with the company reaching 40 acquisitions by the year 1979.[11]
An economic downturn in 1970 forced the company to expand beyond its focus on hydraulic systems. In the following years it began to expand into the automotive aftermarket, considered a more stable industry. The company also directed itself toward growth in aerospace, acquiring companies that created flight controls and wheel brake equipment for airplanes. By 1979, Parker Hannifin employed 20,000 people in 100 plants, selling 90,000 items for machinery, airplanes, cars and construction equipment to 60,000 customers.[11] The company made some of the equipment inside the mechanical shark in the 1975 movie Jaws.[7]
In milling, the depth of cut is two-dimensional. The Radial depth of cut (AE or RDOC) is the length that the tool engages a workpiece perpendicular to its axis direction. The Axial depth of cut (AP or ADOC) is the length in its axis direction. They are both measured perpendicular to the table feed direction.
Parker Hannifindivisions
In 2002 the company appointed Craig Maxwell as head of engineering; Maxwell brought a focus on innovation as well as rigor; he argued for and was given a $20M annual budget to fund blue sky inventions made by engineers and has given engineers time to pursue them; at the same time his team developed software that allows tracking each of the company's 1700 ongoing R&D projects graded by risk and potential reward, and closely managing their progress. In 2011 he hired Ryan Farris out of Vanderbilt University and licensed patents covering a powered exoskeleton that Farris had worked on at Vanderbilt. In 2015 the company opened an internal business incubator that Maxwell had proposed when he was first hired.[7]
During World War II, Parker experienced a boom in business as the U.S. Air Force's primary supplier of valves and fluid connectors.[7] By 1943, the firm employed 5,000 Cleveland, Ohio, residents. After Arthur Parker's death in 1945[10] and the end of the war, the company neared bankruptcy due to the sudden drop in demand. Arthur Parker's wife, Helen Parker, assumed control of the company and prevented its liquidation.[11] She hired new management staff and directed the company's focus back to civilian manufacturing.[10]
Parker Hannifingroups
In 1995, it was discovered that failures in a servo unit supplied by Parker Hannifin to Boeing for use in their 737 aircraft may have contributed to several accidents and incidents, including the crashes of United Airlines Flight 585 and USAir Flight 427.[41][42]
The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)
We can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
Parker Hannifin's aerospace group designs and manufactures aerospace hydraulic equipment, flight controls, fuel system components, high-temperature bleed air valves, and other components.[33] Headquartered in Irvine, California,[34] Parker Aerospace operates facilities around the world.[35] The company has had contracts to contribute parts and maintenance for machinery produced by Airbus,[36] Rolls-Royce, Commercial Aircraft Corporation of China as well as other manufacturers.[37]
The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)
By 1927, the firm had expanded into airplanes. For his flight across the Atlantic Ocean, Charles Lindbergh requested Parker parts be used in the construction of his aircraft the Spirit of St. Louis.[7] The firm contributed the system that linked the aircraft's 16 fuel tanks.[9]
The company was founded in 1917 and has been publicly traded on the New York Stock Exchange since December 9, 1964. The firm is one of the largest companies in the world in motion control technologies, including aerospace, climate control, electromechanical, filtration, fluid and gas handling, hydraulics, pneumatics, process control, and sealing and shielding. Parker employs about 61,000 people globally.
Since the diameter, helix angle, and flute count of the milling cutter can not be changed. We can find an optimal cut depth that will yield a constant cutting force:You can use our above calculator to find out this depth of cut. All the multiples of this depth will also yield constant force.When you machine with a constant force, you will get less vibrations, a better surface finish, and a longer too-life.You can also use this theory in another effective way. Suppose you have a mass-production job and must constantly machine at a certain depth. If you reverse the formulas, you can find specific combinations of diameter, flute count, and helix angles to yield constant force and smooth machining. The result will be non-standard figures. But it may be well worth designing and purchasing a special cutter according to these parameters for a mass-production job.You can use our above calculator to find out the optimal milling cutter geometry for your required depth of cut.Radial Depth of Cut (Cut Width)The Radial depth of cut is also called Stepover and Cut Width. It is designated by ae or RDOC.The maximum possible radial depth is the cutter’s diameter.When the radial depth is larger or equal to the cutter’s radius, the chip load is similar to the feed per tooth.The chip load is reduced for smaller cut widths because of the chip thinning effect. (See below)Chip Thinning EffectIn a milling operation, the Chip Thickness varies between the point of entry (A) and the Point of Exit (C).When the Radial Depth of Cut is greater or equal to the cutter’s radius, The maximum Chip thickness equals the Feed Per Tooth.When the radial depth of cut is smaller than the cutter’s radius (Point B), the maximum chip thickness gradually decreases even though the feed per tooth remains the same.This phenomenon is called Chip Thinning.Chip Thinning allows dramatic productivity gain since you can multiply the Feed by the Chip Thinning Factor (RCTF) while keeping the Chip Load within the recommended range! Learn more about it in our detailed guide about chip thinning\( \large RCTF = \)\( \huge \frac{1}{\sqrt{1-\left ( 1 – 2 \times \frac{Ae}{D} \right )^{2}}} \)Depth Of Cut Effects On MachiningIf we understand each effect, we can make informed decisions about changes in radial or axial depth of cut to solve the problem we have on hand. Assuming that the Cutting speed, spindle speed, cutter diameter, and feed are constant, let’s have a look at what changes in AE and AP are affecting.Productivity:The productivity of the machining process is measured by its Metal Removal Rate (MRR).\(\large MRR\,[\frac {Inch^{3}}{min}] = W\,\times\,F_n\,\times\,V_c\,\times\,12\)Use our MRR Calculator to calculate it and learn more about this important propertyWe can see from the formula two things:As we increase both AP and AE, we gain more productivity.Both depth directions have the same effect. So a process with AE=0.5″ and AP=0.75″ will yield the same output as a process with AE=0.75″ and AP=0.5″.We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
In 2001, CEO Don Washkewicz introduced lean startup methods to company operations and has said that over the decade this reduced the time to obtain price quotes by 60% and cut product development lead times by 25%.[20][21]
We would increase AP and AE extensively in an ideal world to gain high productivity. Unfortunately, this is not the case in real life, as we will have many more parameters to consider.Chip Load:The chip load during a milling process depends on cutter geometry, cutting speed, table feed, and radial depth of cut. The axial depth of cut has a zero effect on the chip load. (Learn More)Use our Chip Load Calculator to calculate it and learn more about this important propertyWe cannot exceed a certain chip load for each geometry without damaging the cutting edge or hurting the tool-life. AP has zero effect on the chip load. but AE does according to the Chip Thinning Factor. So, we can keep the same productivity and decrease the chip load by “playing” with the proportion between AP and AE.A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will have a lower chip load depending on the chip thinning factor.Machining Power Consumption:The power consumption in a milling process is calculated by the Metal Removal Rate (MRR) times the Specific Cutting Force (KC).\(\large P[HP] = \LARGE \frac{MRR\,\times\,KC}{400}\)\(\large P[kW] = \LARGE \frac{MRR\,\times\,KC}{60,000}\)Use our Machining Power Calculator to calculate it and learn more about this important propertyWe saw above that MRR depends on AP and AE in the same proportion. However, the second parameter in the formula is the Specific Cutting Force (KC). It depends mainly on the workpiece material but also on the chip thickness and the radial depth. For the same MRR, a reduction in AE (and an increase in AP) will yield lower power consumption. For Example:A process with AE=0.5″ and AP=0.75″ will yield the same productivity as a process with AE=0.75″ and AP=0.5″, but the latter will require lower power consumption from the CNC machine.Bending Force:Both AP and AE increase the bending force when they are larger. However, the axial depth of cut is much more influential. Therefore, if you face problems related to bendings, such as chatter or non-straight walls, you should decrease the AP before you touch your AE.Heat Removal:As seen in the sketch, each cutting edge absorbs heat when it is engaged with the material and cools downs when it is in contact with air. The “air time” percentage depends on the radial depth of cut. Therefore, you can reduce the AE if you have fast wear associated with overheating. The Axial depth has no direct influence on heat removal.Related Pages:Metal Removal Rate Calculator and FormulasMilling Calculators and FormulasSpeeDoctor: Speed & Feed Calculator (Milling, Turning, Drilling & grooving)« Back to Glossary IndexRelated Glossary Terms:Radial Depth of Cut (Milling AE)Axial Depth of Cut (Milling AP)Milling Feed Rate (Table Feed)Chip LoadCutting SpeedCutting EdgeChip ThinningMetal Removal Rate (MRR)Specific Cutting Force (KC & KC1)CNC Machine
The company won $2 billion in contracts to build fuel and hydraulic systems for Airbus A350 airliners in 2008[22] Two years later, its products were used in repairing the Deepwater Horizon oil rig.[6]
ParkerAerospacenaplesjobs
In 1993, the Federal Aviation Administration contracted Parker Aerospace to develop a new monitoring device, the Multi-Sensor Enroute Flight Inspection System, for flight inspection aircraft.[38]
Arthur L. Parker founded the firm as the Parker Appliance Company in Ohio around 1917 or 1918.[6][7] In its early years, it built pneumatic brake systems for buses, trucks and trains.[6] In 1919, Parker's truck slid over a cliff, causing the company to lose its entire inventory and forcing the founder to return to his previous job. Nonetheless, he restarted Parker Appliance Company in 1924.[8]