45° cutting edge | D.O.C. max. 0.217" (5.5mm) • Negative axial rake, positive radial rake • Double-sided inserts with 16 cutting edges • Special geometry for consistent cutting and long life • Strong insert and powerful clamping

45° cutting edge | D.O.C. max. 0.275" (7.0mm) • Negative axial rake, positive radial rake • Double-sided, extra-thick insert with 8 cutting edges • Large rake angle reduces cutting forces • Wiper insert geometry for good surface quality

45° cutting edge | D.O.C. max. 0.236" (6.0mm) • Negative axial rake, positive radial rake • Double-sided, extra-thick insert with 8 cutting edges • Low cutting loads and excellent smooth cutting

Miniature End Mills - Corner Radius - Long Reach, Stub Flute, Miniature End Mills ; Overall Reach: 0.5000" (1/2) ; Reach Multiple: (8x) ; Tool #: 42960-C3 ...

Yes, I want to receive exclusive deals, helpful tips, and behind the scenes looks at new products. I know I can unsubscribe at any time.

45° cutting edge | D.O.C. max. 0.138" (3.5mm) • Positive axial rake, positive radial rake • 45-degree cutting edge • Inserts have 8 cutting edges • Screw clamping

90° cutting edge | D.O.C. max. 0.303" (7.7mm) • 90-degree shoulder mill • Double-sided, thick insert for high stability and deeper cuts • Inserts with 6 cutting edges

90° cutting edge | D.O.C. max. 0.394" (10.0mm) • Positive axial rake, positive radial rake • 35-degree rhombic inserts with two different nose radius options • High polish for excellent surface finish and reduced built-up edges • Large chipbreaker grooves for controlled chip evacuation • Low cutting forces due to the positive cutting edge

Milling Cutter Series: Filter by the Haas Milling Cutter Series to find all the inserts available for that specific cutter. If you don’t know the cutter series (or have a non-Haas cutter body), you can also filter by insert style (shape), or ANSI designation.

Image

This price includes shipping cost, export and import duties, insurance, and any other expenses incurred during shipping to a location in France agreed with you as a buyer. No other mandatory costs can be added to the delivery of a Haas CNC Product.

90° cutting edge | D.O.C. max. 0.649" (16.5mm) • Superior perpendicularity and minimized cutting loads • Optimized for high-quality surface finishes • High rake angle lowers cutting loads and minimizes burrs • High-speed and high-feed capability improve productivity

17.23° cutting edge | D.O.C. max. 0.07" (1.8mm) • Negative axial rake, negative radial rake • Positive rake angle for lower cutting forces • Strong vibration and impact resistance • Large chip pocket for smoother chip evacuation

90° cutting edge | D.O.C. max. 0.67" (17.0mm) • Designed for high-speed machining of aluminum • Buffed surface for smooth chip evacuation and reduced BUE • High rake angle for good surface finish and lower cutting loads • For square shoulder milling and curved surface machining

Jan 18, 2021 — Thread milling is cool but my machine lacks a spindle encoder (so far). Change gears can be abolished by doing an electronic leadscrew hack - ...

Round edge | D.O.C. max. 0.236" (6.0mm) • Superior perpendicularity and minimized cutting loads • Optimized for high-quality surface finishes • High rake angle lowers cutting loads and minimizes burrs • High-speed and high-feed capability improve productivity

90° cutting edge | D.O.C. max. 0.059/0.098" (1.5/2.5mm) • Double-sided inserts with 4 cutting edges • Unique geometry for lower cutting loads and longer life  • High rake angle with strong, sharp cutting edges • Designed for high-efficiency plunge milling

90° cutting edge | D.O.C. max. 0.63" (16.0mm) • Positive axial rake, negative radial rake • 3D helical cutting edge for lower cutting forces • Wiper geometry for high-quality surface finishes • Superior perpendicularity and minimized cutting loads

90° cutting edge | D.O.C. max. 0.591" (15.0mm) • Positive axial rake, positive radial rake • Sharp cutting edge geometry, and robust inserts • First choice for large cutting depths with high feedrates • Specially designed cutting edge, for high-quality shoulder milling

Case (Surface) Hardening. Because through hardening has no effect on mild steel (<0.25% carbon), the material must be case or surface hardened. In a process ...

45° cutting edge | D.O.C. max. 0.236" (6.0mm) • Positive axial rake, positive radial rake • Large rake angle for faster, easier cutting • Inserts with 4 cutting edges

King Canada, metalworking, woodworking, parts, accessories, automotive, products, machines, tools, compressors and air tools, material handling, outdoor, ...

90° cutting edge | D.O.C. max. 0.217" (5.5mm) • Superior perpendicularity and minimized cutting loads • Optimized for high-quality surface finishes • 3-face clamping for stable operation in tough conditions • Suitable for plunge milling

2023220 — Cobalt alloys have excellent strength and toughness, high-temperature strength and resistance, and good corrosion resistance.

15° cutting edge | D.O.C. max. 0.071" (1.8mm) • 15-degree high feed mill • Inserts with 4 cutting edges • Ramping possible • Double clamping system for inserts

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

90° cutting edge | D.O.C. max. 0.217" (5.5mm) • Superior perpendicularity and minimized cutting loads • Optimized for high-quality surface finishes • High rake angle lowers cutting loads and minimizes burrs • High-speed and high-feed capability imrpove productivity

Oct 31, 2023 — A critical severity authentication vulnerability was discovered in Confluence Server and Data Center (CVE-2023-22515). This page contains frequently asked ...

90° cutting edge | D.O.C. max. 0.571" (14.5mm) • Negative axial rake, positive radial rake • 90-degree shoulder mill with rectangle insert • Double-sided, thick inserts for high stability and deeper cuts

Dec 29, 2018 — If the bit is too hot to the touch, increase the feedrate or lower the speed dial on the router. The best way to dial in your settings is with ...

Resulfurized steels are free machining steels. This includes steel grades in the 11XX and 12XX series, such as 1215, 12L14, 1117, 1137, and 1144. These steels ...

Material Type: Filter by primary workpiece material to find the inserts that are best suited for that specific material. You can also then filter by secondary workpiece material to find inserts that will cut multiple materials.

Curved edge | D.O.C. max. 0.039" (1.0mm) • Low entering angle for high feedrates • High cost-efficiency, with 4-corner inserts • Positive rake angle for lower cutting forces • Wide flank face for rigidity and strong clamping

Apr 9, 2020 — Chemical and Physical Properties of Nickel ... Used in electroplating and metal alloys because of its resistance to corrosion. Also in nickel- ...

Depth of Cut: The maximum depth of cut (DOC) for a specific insert. The maximum DOC is affected by many variables, and may not be achievable under all conditions.

Both techniques offer unique advantages and applications, making it essential to understand their differences to make an informed decision.

Image

Image

There are several variables that go into choosing the correct insert for your milling operations: the specific cutter body being used (milling cutter series), the type of machining operation (toolpath type), the cutting-edge angle (lead angle), the depth of cut, the materials being cut, and more. Use the filters on the left-hand side below to narrow down your choices, and find the inserts you need.