Lubrication is important for tapping in general and especially for roll form tapping. “Using a tap holder with internal coolant capability allows the use of taps with either an axial coolant hole for blind holes, or radial coolant holes for through hole applications,” said Johnson. “This gets the coolant where it is needed for the cutting or forming of the threads. It also greatly helps with clearing chips out of the hole when using cutting taps.”

Looking toward the future, White cited the importance of R&D in the development of new and better threading tools. “We work in an area where the thread configurations—as wide and different as they are—have been well established. Our responsibility includes developing tooling that will work for the customer in specific applications. For instance, we developed tooling that’s been successfully used in fracking operations, where pumps have to be quickly and efficiently restored to working order after handling highly abrasive slurries,” he said.

It is well to remember an old, but still true, adage: “The customer does not want drills. He wants holes.”

Advanced technologies used in Iscar USA’s two-flute SUMOCHAM exchangeable head drilling line form the basis for the design of its three-flute LOGIQ3CHAM exchangeable head drill line. “When you think of a hole, it seems to be very simple—just a radius projected into a third dimension. But it’s a common feature that is used for producing products in job shops and high production environments, like automotive. [It is also common in] high-precision applications like die mold, medical and off-road industries,” said Craig Ewing, national product specialist-drilling for Iscar USA, Arlington, Texas.

“The past ten years have evolved tremendously,” said Maunu. “The development of small drills that can deliver coolant to the cutting edge and new coatings and geometries have enabled customers to successfully complete multiple holes in hard-to-machine materials. As we move into the future, drills will doubtless become more accurate, and improved coatings will play an increasingly larger part.”

When the goal is improved surface finish, a number of process elements must be incorporated. According to Maunu, “As the demand for improved finishes grows, both toolmakers and manufacturers are having to consider a variety of variables, including the tool substrate, the coating, the geometry, and the speed and feed. While the coating is generally considered to be a primary contributor to the process, all of the inputs have to be properly dealt with to obtain the optimum setting. When it comes to secondary operations, some manufacturers are finding ways to sidestep them through multi-axis equipment and tooling with select tool geometries.”

The economy, flexibility, and convenience of indexable tooling has also become relevant in small-hole drilling. Ewing cited Iscar’s SUMOCHAM, a line of replaceable-head drills, which are now available down to 4.0 mm in diameter. “We’ve developed three different standard geometries, including one for cutting exotic materials. The pocket design converts the cutting forces into gripping forces without potential plastic deformation. As drills get longer, self-centering geometries, with lower cutting forces on hole entry, improve drill performance regarding hole position and quality.”

The depth/diameter ratio will continue to increase, and there will be even greater emphasis on eliminating processes, according to Maunu. “For instance, one of our customers formerly had to send out parts for gundrilling and lost up to eight weeks in the process,” he said. “We developed a tool for him that enables him to complete the process in-house, thereby saving all that time and enabling him to take on additional work. Is the newer tool more expensive? Yes, but the price is more than justified in terms of increased production and time savings.”

The requirement for smaller-diameter holes has proliferated throughout manufacturing, ranging from the smallest parts made on Swiss-style machines to some of the largest components in aircraft engines and elsewhere. In addition to simply avoiding drill breakage, tolerances and finish have become major points. The solution to the problem extends well beyond the tooling and requires an optimized combination of factors.

Advancements in holemaking in the past decade have largely been due to methods, materials, and technologies that originated in other areas of manufacturing. Moving forward, toolmakers are incorporating their experience in getting “ahead of the curve” with new products and parameters.

The number one challenge of drilling with three flutes in steel is getting the chips to evacuate through a flute volume that naturally gets smaller with the addition of the third flute. “Aluminum chips are softer and more malleable so they can be ejected out of the hole even if the chips are longer,” Strauchen said. “Steel chips, on the other hand, are far less forgiving if not broken and controlled adequately. With the addition of a third flute it’s critical to produce small chips (6’s and 9’s) to ensure stable, consistent results.”

Maunu from Mitsubishi cited the importance of the basics when it comes to speed and accuracy in small diameters. “We are always engineering new substrates, coatings, and geometries capable of dealing with today’s non-traditional materials,” he said. “Depending on the diameter, the complexity inherent in tool selection changes by what machines the customer is using and what features we can make available. At present, 0.019" (0.48 mm) is the smallest diameter capable of delivering coolant, which is as important for chip evacuation as it is for thermal control, and chip control is one of the biggest problems in small-hole drilling.”

As with holemaking, smaller diameter holes pose their own problems for threading. Historically, tapping was the preferred solution. Unfortunately, when it comes to high-value-added parts, a broken tap could cause immediate scrappage. “Even today, high-temperature materials break taps, and thread milling is now the preferred procedure,” said White. “Besides breakage, taps wear out fast and require frequent changeover time. Thanks to our new substrates and the use of nano coatings, our tools are much stronger and more heat resistant. Further, the use of coolant through the thread mill extends tool life. On some of our smaller tooling, we’ve incorporated three flutes for improved chip evacuation. In any small-hole threading, deflection is the biggest problem, but we have satisfactorily cut threads as small as 00-96 UNS.”

For example, in one test using rigid tapping to tap ten M8 holes at 2,500 rpm, cycle time was 18 seconds. Repeating the same test at 4,000 rpm saved just one second. Using a self-reversing tapping attachment at 2,500 rpm to tap the same ten M8 holes took just 11 seconds. “In addition to improving cycle time, using a self-reversing tapping attachment also allows the tap to run at the recommended speed, and this provides longer tap life as well,” said Johnson.

“When it comes to the new generation of applications, it is our responsibility not just to be able to perform the operation successfully, but to provide our customers with tooling that will generate higher performance and achieve economies over a longer tool life,” he stated.

For short chipping hardened steel and cast iron, Emuge A-H Taps are a new generation of Premium HSS-E and HSSE-PM taps that are especially efficient for tapping abrasive materials and materials with high hardness levels, such as cast iron, common in the heavy equipment and agricultural vehicle markets. Emuge A-H Taps are available with or without coolant through holes and with TiCN coating, or NT nitride surface treatment, for improved tool life.

YG-1 USA, Vernon Hills, Illinois, is a full-line supplier not only of holemaking tools but also of carbides, round tools and inserts as well as high-speed steel, powdered metals and cobalt. It produces some 60 million round tools a year, according to Steve Pilger, national product manager, holemaking. “We service our customers with the latest CNCs as well as legacy Bridgeports. The holemaking challenge for shops is to make a higher quality product and make it in the shortest time possible to the highest tolerances with tools that have superior life and application capabilities,” said Pilger.

Advances in manufacturing—including materials, machines, design capabilities, and part configurations—have prompted the development of corresponding strategies on the part of toolmakers. In some cases, these are the work of a single company, but more frequently they are cooperative efforts with outsourcing of coatings, components, and accessories.

Using a completely solid holder means that even a very small discrepancy will cause high axial forces on the flanks of the threads. “This has a negative effect on tap life and thread quality,” said Johnson. “Using a tap holder with a small amount of axial compensation allows the tap to better follow its pitch and this reduces the axial forces for a dramatic improvement in tap life and thread quality.”

The CBTz tap is surface treated with TiN to reduce friction between the tap and workpiece, which results in improved thread finishes and increased tool life in carbon and alloy steels, cast and forged steels, tool and die steels and 300 stainless steel up to 35 HRC.

LOGIQ3CHAM is designed for carbon and steel materials ISO P and ISO K cast irons and nodular irons. It can increase productivity by up to 50 percent when compared with common two-flute drills with exchangeable heads, according to Iscar. Concave cutting edges enable smooth penetration into the work material, as well as excellent centering and stable drilling. Features include a durable drill body made from a hard, high-strength steel grade for better wear resistance. Polished flute surfaces ensure smooth, easy chip evacuation,, and dovetail clamping prevents the drilling head from being extracted from the drill pocket during retraction, according to the company.

Threading a hole is one of the last critical production steps and having the right tap is critical for avoiding part rework or even scrapped parts, according to Mark Hatch, product director, Emuge Corp., West Boylston, Mass. “When working with materials such as steel alloys and iron, there are a broad range of complexities to address for proper tap selection,” he said. “When tapping alloyed steels, [there are] variations in chip shape, size and length due to variables in chemical properties and heat-treatment. The type and percentage of each chemical element, in conjunction with heat treatment, combine to produce different mechanical properties which affect machinability. When choosing a tap for the application at hand, factoring in the tap substrate, coating and geometry is key. “

David Maunu, applications specialist–medical at Mitsubishi Materials USA Corp., Schaumburg, Illinois, noted the economic considerations brought about by harder, non-traditional materials. “Given the competition that exists in the world market, one of the great challenges for toolmakers is the need to develop a standard tool capable of running in multiple materials with repeatability and reliability,” he said. “Although manufacturers need specialized tooling in any number of cases, economies dictate the need for a product that can run well, deliver satisfactory results, and achieve a reasonable life in a wide range of materials.”

LOGIQ3CHAM is a three-flute exchangeable head drill line available in diameters from 12 to 25.9 mm (0.472-1.020") diameters. Drill bodies come in 1.5xD, 3xD, 5xD and some of the sizes in 8xD. The extra flute enables higher feed rates to be obtained, which increases productivity. “We’re seeing the third flute as being more beneficial in high-production applications as well as increasing tool life,” said Ewing.

Successful tapping applications depend on several important factors. These can include axial compensation on CNC machines, internal coolant supply, and special advantages related to self-reversing tapping attachments, according to Mark Johnson, president of Tapmatic Corp., Post Falls, Idaho. “Rigid or synchronized tapping on CNC machines has become an industry standard,” he said. “Even though the synchronization of the machine’s feed advance to the spindle rotation is accurate, there will always be a small discrepancy between the actual pitch of a specific tap and the machine’s synchronized movement.”

The substrate was ultra-fine grain carbide with reduced cobalt content to reduce the possibility of built-up edge. The tool coating was a material-specific ALU coating that extends tool life while maintaining sharpness.

“We also have our DD series of high-performance drills, which drill in difficult materials,” said Tonne. “We achieve this through higher accuracy runouts and finely polished flutes. Our new Supermini HP tool can drill, bore, face, and turn. This approach allows the end user to rough out small holes and then precision bore. This saves tool change time and reduces tool stations, while providing the best accuracy possible.”

When selecting a substrate, several machining factors are critical, such as torque, thermal stability and wear factors. A powdered metal HSSE-PM substrate, for example, offers added wear resistance for better quality tool edges.

SUMOCHAM exchangeable head drills offer a variety of styles for the common alloy steel applications, said Ewing. “They are available in 1.5D, 3xD, 5xD, 8xD and 12xD depths for typical machining center applications with CAT 40 and 50 shanks, HSK, CAPTO, live tools in lathes and for use in multifunction machines like the Mazak Integrex,” he said.

Self-reversing tapping attachments offer special advantages compared to synchronized tapping. “With synchronized tapping, because the machine spindle needs to stop and reverse within a very limited number of revolutions, it is not possible for the machine to maintain the programmed spindle speed. Using a self-reversing tapping attachment allows the machine spindle to turn continuously in one direction at the actual program speed. The result is a shorter cycle time,” said Johnson.

Lenz foresees incremental developments in virtually all areas of holemaking. “Toolmakers will be working toward the development of more effective standard drills that can perform well in a range of materials and applications,” he said. “This will necessitate a heavy emphasis on chip evacuation, coatings, and larger flutes. At the same time, it will be impossible to avoid those specialty applications that require individual attention, including optimized geometries for special material configurations such as customized alloys derived through nanotechnology.”

The chamfer is also emphasized by Iscar’s Ewing. “We employ a number of different techniques regarding chamfering, including mounting drill bodies inside a chamfering collar, to drill and chamfer in a single operation,” he said. “We have also devised special tooling that drills and chamfers on one side, and also chamfers on the back side, by circular interpolation. This is particularly favored by the automotive industry, as it saves both time and tooling.”

Lenz noted the issues. “Below 2 mm, you need quite a bit more rpm—generally in the range of 10,000 to 20,000, depending on the material,” he said. “More than just the spindle speed, the machine has to be stable, and both the tool and the workpiece require rigid workholding so that there is no run-out or instability. Obviously, the geometry must be correct, and the proper coating is important. But, I think the main takeaway is that, if you’re going to do this kind of work, you need the correct options on the machine to increase your chance for success.”

White also noted that the development of new substrates and the definition of new geometries will enable faster production without sacrificing precision and finish. He believes that, in the near term, finishing will become even more important, as his company deals with a larger population of printed and composite parts. “We’re also increasing the number and variety of products we create for Swiss-style machining and for specialty applications in medical and aerospace,” he said. The company’s newly introduced CIM toolholder permits the changing of Swiss-style tools without removing the holder, thus saving changeover time.

Ewing summarized the future of holemaking in two uncompromising directives: “Get smaller, and get faster.”

Lenz of Seco Tools noted the relevance of chamfer size. “By increasing chamfer size, we have been able to reduce the creation of burrs,” he said. “This holds true especially with some of the newer, more abrasive materials. The larger the chamfer, the better—and cleaner—the cutting operation. In certain applications, we’ve actually increased the radius to an almost ball-nose design. Of course, a lot depends on the tool itself and its composition and coating. For instance, a diamond coating will work best on composites.”

For drilling steel and cast iron where flexibility is valued and the highest speeds and feeds aren’t required, YG-1 offers the I-Dream Drill General line, which offers versatility in drilling steels, carbon, alloy, and cast irons.

In short, the performance in drilling does not come from any one aspect of the system but from each contributing part—from the spindle to the tool tip.

When long chips are the challenge, taps are available with cutting face geometry and spiral flute form, which combine to affect chip flow, chip curl and chip length. Emuge chip-breaking technology (Emuge CBTz) produces short, broken, controllable chip formations that eliminate flute clogging and potential failure of the machine tap due to chipped cutting teeth or breakage, according to the company.

Manufacturers have found that the elimination of postprocessing procedures (including deburring) offers multiple advantages, including savings in time and tooling, elimination of hand work, and improved product quality. Holemaking has been responsible for many of these innovations, ranging from such value-based engineering techniques as combination drills that produce multiple diameters to specialized coatings capable of generating an improved finish.

The rapid growth of additive manufacturing in both metals and composites, and the continuing refinement of the process, will exert a major effect on holemaking operations. In the opinion of Tonne, this may well result in a subset differing from traditional drilling operations. “Holemaking will be more of a finishing operation, as the holes will already exist in the printed piece,” he said. “Techniques similar to boring and honing may well be used to refine hole diameters in close-tolerance operations and to provide finishes in the micron range. Achieving the desired result will require the combination of spindle technology, workholding, and tooling.”

Tool geometry is a key factor for the efficient threading of steel alloys. Choosing a straight flute or a spiral flute such as low helix angle (slow spiral flute) or high helix angle (fast spiral flute) will depend on the machinability of the material—how hard it is and its heat treatment. The choice directly affects the chip produced and the tap chosen for the job. If the material is annealed, a long chip will be produced and a high spiral tap may be a good option. However, as the steel hardens, this type of tap may break.

In addition to tooling components (including substrates and coatings), electromechanical devices and on-board machine capabilities are increasingly essential in improving holemaking. Tonne commented, “In certain applications, we recommend the use of force sensors. While we do not manufacture them, they are available from Kistler and perform well. Also, more machines have on-board monitoring to sense drill resistance. What was originally called ‘adaptive control’ has become much more sensitive, and Makino has developed features that actually monitor performance. In helping our customers select the proper drill or other holemaking tool, we have to be aware of the capabilities of their equipment in terms of the application that they are pursuing.”

Over the past five years, Hatch points to improvements in tap tool life and process consistency due to improved tool coatings. “Emuge has developed optimized coatings that are designed for excellent thermal stability, wear resistance and a low friction coefficient. Because coating adhesion on taps can be challenging due to the tools’ peaks and valleys, Emuge has engineered coatings that are precisely distributed across surfaces and will stay put,” Hatch said.

Tonne cited several means of combining speed and accuracy in smaller diameters. He noted that Horn offers precision collet systems from Fahrion, with concentric accuracy down to 2 µm. When combined with through-coolant and jet collets, higher cutting speeds can be achieved even in difficult-to-machine materials.

When cutting hard materials, heat is the enemy. It not only affects accuracy but substantially shortens tool life, according to Manfred Lenz, product manager–holemaking for Seco Tools LLC, Troy, Mich. “With metals such as high-temperature alloys, built-up edge is a problem,” he said. “So, sharp edges and coatings that can withstand the higher temperatures and reduce or eliminate built-up cutting edges are essential. The main problem with composites is the abrasion that can wear a cutting edge and therefore create tear-out. A solution here is to keep the edge sharp with specially formulated coatings or PCD-tipped drills.”

Drew Strauchen, executive vice president, GWS Tool Group, Tavares, Fla., noted that part of the evolving trend in holemaking (and metalworking in general) is the customization of holemaking solutions to more perfectly fit the customer’s exact application while minimizing operations. “Being able to pick the best substrate, geometry, coating, and tool lengths for the shop’s specific application is paramount to more manufacturers looking to compete in a global market. Along with customization is combining two or more tools to further reduce operations and cycle times—the very definition of optimization,” he said.

He also described a large brazed-carbide reamer with staggered coolant ports in each flute. This brazed-carbide reamer features an independent rotating plunger designed to detect blind or undersized holes. It detects these holes by compressing when meeting an obstruction and blocking coolant, which stops the machine prior to the tool breaking.

Manufacturers have good options in both roll forming (chipless production of internal threads) and cutting taps. For example, Emuge offers Innoform–Steel-M, a line of HSSE-PM taps for forming threads with improved surface quality, while increasing static and dynamic thread strength, in medium strength steels up to 44 HRC.

The unique pocket design of the SUMOCHAM drill takes advantage of the cutting forces that are mechanically exerted upon the tool. These forces are converted into gripping forces used for tightening the insert towards the back of the pocket—the more cutting forces applied, the better gripping forces obtained.

For coating, YG-1 has developed a post-coat treatment for its proprietary H coating that aids chip evacuation in deep-hole drilling. “The treatment smooths out the peaks and valleys that result in coating. We found that we can pick up about 20 percent more tool life by applying polish to inserts, insert tips and normal sized drills,” Pilger said. “For deep-hole drilling, high-pressure coolant delivery on machining centers has enabled shops that 15 years ago were forced to gundrill parts at 1-2 ipm on dedicated gundrill machines. Now they can process the same deep holes on CNC machining centers at 20 to 30 ipm.”

Tapmatic’s SynchroFlex tap holders include a machined flexure that provides a small amount of axial compensation. “The SynchroFlex flexures have a high spring rate, which is important for avoiding axial miscutting,” he said. “If the spring force is too soft, like in the case of traditional tension-compression tap holders with a large amount of axial compensation, axial miscutting can occur. This is especially true when using free-cutting, high-speed taps often recommended for synchronized or rigid tapping cycles. SynchroFlex is designed to provide just the right amount of compensation for synchronized tapping.”

Maunu cited both basic tool composition and design. “As cutting tools have caught up with machines in terms of performance technologies, several new strategies have emerged,” he said. “The use of rare earth carbon substrates is increasingly necessary, as is the ability to handle different forms of coolant, depending on the operation. For instance, one of our new drills features triangulated holes for better chip control. Throughout the development phase, we were aware of the need for proper coolant flow. The reality is that successful tool manufacturers now have to update and extend their standard product lines to compete economically.”

Edwin Tonne, training and technical specialist for Horn USA Inc., Franklin, Tenn., defines some of the problems in making holes with drills in materials such as titanium and austenitic stainless steel grades. “The problems start at the very beginning in that it requires more effort to get into the material, resulting in a tendency to run higher in thrust,” he said. “Further, these materials frequently clamp back on the drill and don’t cut cleanly, wearing the drill faster than normal. Problems derive from the materials’ toughness rather than simply hardness. Some of the other materials, such as plastics, are harder and that brings about its own set of problems.”

The need for stronger and lighter components in critical applications has prompted the use of non-traditional materials. These include new specialty steels, newer alloys, ceramics, composites, and glass. Difficult to machine and to penetrate, they are frequently used in parts requiring exceptionally tight tolerances and a fine surface finish.

“Certainly, new high-temperature materials pose challenges for thread making—whether milling or tapping,” said Jim White, national sales manager at Carmex USA. As important as new carbide substrates and coatings are, design also plays a critical part, he added. “The helical contours of many of our tools not only result in a more accurate thread profile but deliver a better finish as well. We’ve also developed refinements such as our DMT center cutting end mill that starts on uneven surfaces which, with conventional tooling, could result in an elliptical hole.”

You might be able to use some of the recent developments described here by several leading toolmakers.

The most basic and frequent demand is for a “clean cut” that eliminates deburring and improves accuracy. Horn USA’s Tonne cited the importance of programming. “The most common technique for avoiding tear-out as the drill exits the hole is to reduce the feed. Likewise, in more difficult materials, reducing feed on entry can reduce the burr at the top of the hole. We also offer special drills in our DD series that can be engineered with additional chamfering, guidance and deburring built into the tool.”

Steel applications are also benefiting from three-flute drills for a number of reasons, according to Strauchen. Formerly used effectively just for aluminum applications, three-flute drills are becoming increasingly popular for materials like cast iron and steel. “New flute forms married with coolant-through technology have expanded the capability for ferrous materials. Adding the latest in ultra-smooth PVD coatings and integrating reverse web tapers has further enhanced our capacity to produce drills that optimize productivity while ensuring stable chip evacuation,” he said.

It’s fair to say that holemaking accounts for the largest share of machining both in small shops and large production facilities today. And the bulk of that holemaking is drilling in steel and cast iron up to 1" (25 mm) in diameter. What is driving drilling and tapping performance are advances in substrate, coatings, three-flute designs, and combination tools. Just as important are advances in coolant delivery, using different size holes and shapes to facilitate chip evacuation.

“The tool was designed for a highly abrasive, high-silicon aluminum component. The tool’s geometry combined a counterbore, chamfer and drill in a one-step tool that eliminated costly cycle time,” Strauchen said. “Previously, the process required three operations, three tool changes and inventory management of three different part numbers. The three-flute, high-shear design features coolant passages behind each cutting edge to maximize feed as well as super-polished flutes to further improve chip evacuation. Feed rates in this application exceeded 300 ipm.”

Innoform-Steel-M Taps feature polygon geometry for low torque and longer tool life. A special powdered metal substrate and a TiN-66 coating with increased hardness reduce friction and extend tool life. Innoform-Steel-M Taps are recommended for forming cold-extension steels, cementation steels, castings, heat-treatable nitriding and cold work steels, as well as high-alloyed and hot work steels.

The newest addition to YG-1’s drill lineup is the I-ONE modular interchangeable head drill, available in 3xD, 5xD and 8xD lengths. The steel body offers flexibility and can hold five or six different size inserts cutting from the same flexible steel body. I-One offers the advantages of a carbide drill with flexibility of a steel body.

When it comes to post-processing, it is often more effective to incorporate preventative measures rather than after-the-fact treatments. For example, the use of combination tools can eliminate costly finishing operations, and cutting off a partial thread in the initial pass is effective in preventing cross-threading.

Just as holemaking has undergone multiple advancements, threading has likewise followed suit. For more than 30 years, Carmex Precision Tools LLC, Richfield, Wis., has specialized in the development of tooling for thread milling. The wide variety of thread types and sizes has meant developing ancillary equipment, including specialized toolholders and compound tools for both drilling and thread milling.

One of mankind’s oldest manufacturing methods—making a hole—is now challenged by rapid advances, including new and harder materials, increased part complexity, ever smaller component parts, and the need for shorter cycle times. What had been a fairly routine procedure now demands tooling with stronger substrates, better—and in some cases, customized—coatings, along with improved geometries and specialized designs.

Lenz noted the effort—and effectiveness—required for the development of “targeted” coatings. “Seco Tools is doing more R&D every year, especially in the area of addressing particular problems,” he said. “For instance, we have a new coating that almost eliminates built-up edge, and we’ll be using it on both our MS (milling) and DS (drilling) grades. The performance has been extraordinary, and thanks to the coating and a geometry that includes a very sharp edge and a positive rake, we were able to go from 500 to 4,000 holes. This took quite a bit of research, not just in terms of the formula but also the means of application.”

Ewing likewise emphasized a continual need for research on new materials for both drill bodies and coatings. “The term ‘carbide substrate’ is no longer enough,” he said. “Thanks to nanotechnology and other developments, the library of substrate choices has increased substantially. As for coatings, we’re increasingly seeing multiple coats that have to be sequenced in terms of type and amount for maximum performance.”

YG-1’s premier product is the Dream Drill solid-carbide drill, according to Pilger. “Dream Drills maximize tool life and chip evacuation when running cast irons and steels,” he said. “For example, for steel applications to perform at the most efficient feeds and speeds, a split-point style drill might be recommended, while for a stainless steel you might use a more positive four-facet style.” Dream Drills are available from 1-20 mm diameters in 3xD, 5xD and 8xD lengths. YG-1 also offers them in 10xD, 15xD, 20xD, 25xD and 30xD extra-long drills, all from stock. “Some customers are changing how they run some steels like 4140 alloy steel. They want to process high quality parts at high production rates,” said Pilger. “They need higher speed cutting, taking the average 350 to 450 sfm to produce the highest quality parts and achieving the longest tool life.” For these high-production, high-volume environments, YG-1 offers the Dream Drill Pro line for alloy steels and cast-iron auto parts.

For example, Iscar has ten standard geometries, but is often called on to create specialized designs. “Additional solutions use diamond-tip inserts or diamond-like coating, which improve tool life and can be a cost-effective alternative to coated carbide,” said Ewing.

What is historically one of the oldest and most common machining processes has evolved, of necessity, into an ever-growing array of complex designs, materials and parameters. In an effort to meet the ever-expanding demands of an increasingly complex marketplace, it can be tempting for toolmakers and manufacturers alike to become overly enmeshed in choices and details.

SUMOCHAM, which is available in diameters ranging from 4 to 32.9 mm (0.157 to 1.295") in 0.1 mm (0.004") increments, offers a variety of edge preps for various carbon and alloy steels, as well as high-temperature steel alloys and stainless. SUMOCHAM features a clamping system that enables improved productivity output rates, while enabling more insert indexes. The shank itself is designed with twisted nozzles and has a durable and stably constructed body. The indexable heads are available in ten different standard geometries designed for drilling steel, exotic materials, cast iron or aluminum, according to the company.

Performance criteria has to include the correct geometry for proper chip control, he noted. “The specialized drills demanded for composites require specially formulated substrates and multiple coatings and, as such, are more expensive. By combining standardized drills where possible and specialized units where necessary, manufacturers and customers can average costs to achieve better economic performance.”

Combination tools are versatile, as this selection from GWS suggests. “Each tool has its own story and problem it solved,” said Strauchen. “One drill creates three steps within the part with mirror finishes. Another is a four-step high precision reamer with 45˚ coolant ports in each flute. This design maintains tolerance within 2 μm and finish under 8 RMS.”

Craig Ewing, national product specialist–drilling at Iscar Metals Inc., Arlington, Texas, discussed the difficulties inherent in composites and ceramics. “The main challenge with non-traditional materials is the need for balance of both higher performance and longer tool life. Often, this is a function of carbide grades and edge preparation. The challenges with ceramics and composites are two-fold. They are extremely abrasive, which adversely impacts tool life. Composites also have a tendency to delaminate or fray without the correct geometry.”

In addition to implementing new advancements in technologies, GWS Tool Group is designing combination tools that permit customers to perform multiple drilling operations with one tool, instead of two, three or sometimes even four tools. “Being able to tailor a tool for a specific application is critical for reducing operations and cycle times,” said Strauchen. He supplied an example of a combination tool developed for an electric car manufacturer.

Tapmatic’s SynchroFlex tap holders all include a balanced, high-pressure internal coolant system. Pressure up to 80 bar or 1,200 psi can be used and because the system is balanced, the coolant pressure does not influence the tap holders axial compensation.