Information about these applications usually falls into the category of what people in the machining industry don’t know about ceramic cutting tools. Equally frustrating for the firms that sell these tools, however, is what many people think they know based on outdated information.

The keyword “Tradeshow FAMETA 80 in Essen” gives me an opportunity to point out another event, quasi a world premiere. At that time, PCD monoblock milling cutters, straight-edged as well as profiled cutting edges, were already in use in the furniture industry, particularly in the kitchen cabinet industry.

Cast iron having a graphite shape intermediate between the flake form typical of gray cast iron and the spherical form of fully spherulitic ductile cast iron. Also known as CG iron, CGI or vermicular iron, it is produced in a manner similar to that of ductile cast iron but using a technique that inhibits the formation of fully spherulitic graphite nodules.

“You may still have to do some finish work with an electrode, but the amount of electrodes consumed should be much reduced,” he said.

When cutting with common tool materials, such as carbide, CBN and PCD, heat is not conducted away from the cutting edge, which eventually breaks down as a result, Howard explained. By contrast, he said, ceramics do a good job of transferring heat away from the cutting edge, thereby extending its life and the life of the tool as a whole.

In a nutshell, polycrystalline cutting tools became a continuing success story, for tool manufacturers and for users – from stationary turning tools and cutting inserts to rotating milling cutters, drills, step drills, reamers, saws, dressing rolls and other tools.

Other press reports of this year allow the conclusion that expectations regarding the future use of PCD tools in the automotive industry had increased enormously. A quote from “Fachberichte für Metallbearbeitung” Nov./Dec. issue in 1980: “Tripling today’s production capacities (as announced by Lach Diamant at FAMETA 80 in Essen and Stuttgart) promises security to consumers in a now economically viable machining technology – and ultimately, this is attributed to Lach Diamant as a counter-initiative to the Japanese challenge.”

Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

Let’s refocus on the status of PCD tools in the automotive industry at the beginning of the 1980s. Using PCD tools for the external and internal turning of materials such as copper, electrographite carbon and, of course, aluminium was fairly well known. The same milling heads previously fitted with carbide inserts were now available for the starting production of aluminium engines and upcoming milling tasks. Soldered PCD milling heads were at that time not yet a solution for aluminium machining.

In general, Howard believes there’s a fairly widespread lack of knowledge about ceramic cutting tools in the machining industry. So he had no trouble identifying some lesser-known applications for these tools. One is cutting hardened stainless steel.

Managing Director and CEO of LACH DIAMANT, Jakob Lach GmbH & Co. KG,  Donaustr.17, 63452 Hanau, Germany. After 55+ professional years in the world of diamonds - Horst Lach, born on April 3rd, 1940, is known as one of the pioneers of the diamond tool industry. His outstanding and brilliant ideas were simply remarkable, and he initiated a complete new way of thinking in the tool industry. Tool life should no longer be measured in hours, but in weeks and months. In 1960, Horst Lach joined his father's diamond cutting facility, founded in 1922.

Howard also noted that ceramic tools are a good choice for cutting compacted graphite iron, which he described as a fairly new type of cast iron that’s very dense and strong. Today, he said, CGI is used to make many diesel engines because it allows manufacturers to use a smaller engine block that can take more compression.

Materials composed of different elements, with one element normally embedded in another, held together by a compatible binder.

Another invention of late that may interest shops that haven’t tried ceramic tools in a long time is a patented material called Bidemics. Howard describes Bidemics as an advanced ceramic designed to conduct more heat away from the cutting edge.

'Poly – Poly – or what?' Part 8: How the 'issue with the comma' became a success, Part 8 (Published 6/25/2019)

Lach-Spezial is the sister company of the family-managed Lach Diamant Jakob Lach GmbH & Co. KG., founded in 1922. It developed from a diamond grinding shop for natural diamonds with approximately 600 employees, and already in the mid 1930s, it had targeted the metal industry with a special program. Initially, it included industrial diamonds for dressing conventional grinding wheels in the automobile, ball bearings and rolling bearings industries, but in the early 1960s the programme was extended, and e.g. natural turning diamonds were offered for turning copper commutators for the electrical industry (Bosch, Siemens, AEG). The following production of resin- and metal-bond diamond and Borazon/CBN grinding wheels completed this program.

Wheel formed from abrasive material mixed in a suitable matrix. Takes a variety of shapes but falls into two basic categories: one that cuts on its periphery, as in reciprocating grinding, and one that cuts on its side or face, as in tool and cutter grinding.

Another lesser-known ceramic application cited by Howard is cutting powder metal, which is popular in the automotive industry.

A relatively new entry in the ceramic tool market from Greenleaf is its Xsytin-360 line of solid-ceramic endmills. Launched last year, Xsytin-360 endmills come in standard diameters down to 3/8", so they can cut much smaller features than indexable tooling.

High-temperature (1,000° C or higher), atmosphere-controlled process in which a chemical reaction is induced for the purpose of depositing a coating 2µm to 12µm thick on a tool’s surface. See coated tools; PVD, physical vapor deposition.

Aluminium milling was still left to PCD cartridge mills, fitted with PCD inserts. Regarding the world premiere: At FAMETA 80 in Essen,  Lach Diamant presented the first PCD monoblock milling cutter for aluminium – featuring an elaborate profile – and demonstrated milling at high feed rates in creep speed.

Crystal manufactured from boron nitride under high pressure and temperature. Used to cut hard-to-machine ferrous and nickel-base materials up to 70 HRC. Second hardest material after diamond. See superabrasive tools.

Substance used for grinding, honing, lapping, superfinishing and polishing. Examples include garnet, emery, corundum, silicon carbide, cubic boron nitride and diamond in various grit sizes.

Machining operation in which material is removed from the workpiece by a powered abrasive wheel, stone, belt, paste, sheet, compound, slurry, etc. Takes various forms: surface grinding (creates flat and/or squared surfaces); cylindrical grinding (for external cylindrical and tapered shapes, fillets, undercuts, etc.); centerless grinding; chamfering; thread and form grinding; tool and cutter grinding; offhand grinding; lapping and polishing (grinding with extremely fine grits to create ultrasmooth surfaces); honing; and disc grinding.

Machining operation in which material is removed from the workpiece by a powered abrasive wheel, stone, belt, paste, sheet, compound, slurry, etc. Takes various forms: surface grinding (creates flat and/or squared surfaces); cylindrical grinding (for external cylindrical and tapered shapes, fillets, undercuts, etc.); centerless grinding; chamfering; thread and form grinding; tool and cutter grinding; offhand grinding; lapping and polishing (grinding with extremely fine grits to create ultrasmooth surfaces); honing; and disc grinding.

“That material is both abrasive and creates heat, and those are the things that wear out tools the fastest,” he said. So for this application, “people will go from carbide straight to CBN, and the cost difference between those two is astronomical.”

He pointed out, however, that NTK makes ceramic tools that can cut CGI for 10 times less than the cost of carbide tools. But few in the industry know this.

As pioneer in machining, development and application of polycrystalline diamond and CBN machining tools, Lach Diamant achieved worldwide reputation after superabrasive manufacturer General Electric offered PCD cutting material for the first time in 1973 (see also part 1 of this article series “Poly – poly – or what?”).

From the many press releases covering this issue in 1980, I quote an excerpt from the trade journal “Produktion” in March 1980: “In excellent shape with long tool times: Nothing is more precise than diamonds. Synthetic diamond cutting edges for machining nonferrous and plastic materials are unstoppable. New grinding procedures (this refers to Lach DiamantI’s so-called spark erosion method) made it possible to produce blades from sintered diamonds in any desired shape and form. Ground into shape, they are perfect for turning and milling aluminium, brass, copper and various carbon and plastic composites. The blade can be shaped in any manner, concave or convex, similar to a saw or threaded profile, with all conceivable options up to a maximum insertion width of 13 mm” (at the time the available maximum for PCD) – today 70 mm to a maximum width of 100 mm.

A look at the (still existing) Lach production and order book, beginning with the first entry in 1979, tells us the following: The first so-called dreboform PCD profile turning tools/threaded steel/endmills et al. were successfully used for machining nonferrous and composite materials at customers such as Rowenta in Offenbach, Grundig in Georgensmünd, Messerschmitt Bölkow Blohm GmbH in Donauwörth, Waldrich in Coburg, FAG in Schweinfurt, Behr in Wendlingen, Bosch in Stuttgart, Fokker in the Netherlands and Vielmetter in Berlin.

When it comes to ceramic cutting tools, don’t believe the old saying, “What you don’t know can’t hurt you.” A lack of knowledge about ceramic cutters can put a big hurt on shop productivity. What’s more, even shops that are somewhat informed about ceramic cutting tools often aren’t getting the most out of the tools because they are unaware of lesser-known applications that are a good fit for ceramic machining, let alone recent developments that make the ceramic option more attractive than ever.

Image

Dimension that defines the exterior diameter of a cylindrical or round part. See ID, inner diameter.

When people tell Howard that they tried ceramic tools for a particular application and it didn’t work, he asks when they tried ceramics. Sometimes, it turns out that the failed ceramics experiment wasn’t even in this century. So he tells these people, “Well, we’ve invented a few things in the last 20-some years.”

Cutting tool material consisting of natural or synthetic diamond crystals bonded together under high pressure at elevated temperatures. PCD is available as a tip brazed to a carbide insert carrier. Used for machining nonferrous alloys and nonmetallic materials at high cutting speeds.

Ceramics “run so much faster” than carbide, Howard said. “And with that comes a lot of fear. People say, ‘Wow, I can’t control this thing because I don’t have enough knowledge or skill.’”

Substances having metallic properties and being composed of two or more chemical elements of which at least one is a metal.

At Greenleaf, Dillaman and his colleagues have had success using ceramic inserts to replace grinding in some cases.

Hardness is a measure of the resistance of a material to surface indentation or abrasion. There is no absolute scale for hardness. In order to express hardness quantitatively, each type of test has its own scale, which defines hardness. Indentation hardness obtained through static methods is measured by Brinell, Rockwell, Vickers and Knoop tests. Hardness without indentation is measured by a dynamic method, known as the Scleroscope test.

Because they do a better job of transferring heat away from the cutting edge, Bidemics inserts can run even faster than typical ceramic cutters — close to 1,600 sfm, Howard said. He added that efficient heat transfer also lengthens the life of cutting edges.

Crystal manufactured from boron nitride under high pressure and temperature. Used to cut hard-to-machine ferrous and nickel-base materials up to 70 HRC. Second hardest material after diamond. See superabrasive tools.

Regarding further developments of the supply of polycrystalline synthetic diamonds (PCD) by the “biggest” suppliers for the tool manufacturing industry, I must express my scepticism whether we can “soon” expect significant improvements in one or the other components for advanced production and use.

Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.

'Poly–poly–or what?' fourth part – a trade show initiates a brilliant idea, Part 4   (Published 12/6/2018)

Depending on the amount of material needed to make an insert, ceramic inserts could be anywhere from 1.5 to four times more expensive than inserts made of more commonly used materials, said Martin Dillaman, global manager of engineering and applications at Greenleaf Corp. in Saegertown, Pennsylvania. Dillaman added that solid-ceramic tools probably cost two to four times as much as their counterparts made of more widely used materials. He added, however, that the higher cost of ceramic tools can be justified by savings in cutting time and throughput increases at shops that use them.

“So people say they’re going to go really, really slow and change tools a lot,” Howard said. “But when we get a few brave people that let us play with ceramic, they go, ‘Oh, my God, I never knew I could do this.’”

Actually, this presentation already established the basis for the introduction of soldered monoblock PCD milling cutters in the automotive industry, but, unfortunately, the time was – even in retrospect – not quite right for this yet.

Please accompany me now to the beginnings of forming and rotating PCD tools with an all-encompassing focus on the automotive world. So far, we touched on the here and now. Back to the year 1980. One of the questions at the time was: Is it possible to transfer the looming success of PCD tools in the industrial series production of wood and plastic to the metal and composite industry?

Poly – Poly - or what? Part 7: Stumbling blocks on the way into the automotive world …, Part 7 (Published 4/15/2019)

The main advantage of ceramic tools is the effectiveness with which they handle the heat generated by the cutting process.

“We found a way to fuse carbide and ceramic together without a cobalt binder,” Howard explained. “The carbide is introduced into the ceramic in kind of a spiderweb fashion. When heat hits the cutting edge, it runs down those little carbide trails and disperses more efficiently.”

Machine designed to use a serrated-tooth blade to cut metal or other material. Comes in a wide variety of styles but takes one of four basic forms: hacksaw (a simple, rugged machine that uses a reciprocating motion to part metal or other material); cold or circular saw (powers a circular blade that cuts structural materials); bandsaw (runs an endless band; the two basic types are cutoff and contour band machines, which cut intricate contours and shapes); and abrasive cutoff saw (similar in appearance to the cold saw, but uses an abrasive disc that rotates at high speeds rather than a blade with serrated teeth).

CTE is happy to be publishing a series of articles by Horst Lach. To date we have published the following :

In addition, he noted that users of ceramic inserts in these cases aren’t limited by the form on a grinding wheel. Instead, they can program different cutting profiles to meet different requirements.

Even if shops aren’t put off by the higher cost of ceramic tools, shops may be unable to make proper use of the tools because their equipment can’t match the speeds for which ceramic tools have the capacity. Or shops actually may be afraid to reach those speeds.

“When they invented this stuff, tooling people loved it because it just carves up cutting tools,” he said. “And the cost justification wasn’t there to go to CBN or PCD because it wears that stuff out too.”

As for Greenleaf’s solid-ceramic endmills, Dillaman said they can speed up machining of hardened materials normally done entirely with EDM operations.

Process similar to ram electrical-discharge machining except a small-diameter copper or brass wire is used as a traveling electrode. Usually used in conjunction with a CNC and only works when a part is to be cut completely through. A common analogy is wire electrical-discharge machining is like an ultraprecise, electrical, contour-sawing operation.

Dillaman also reported that Greenleaf got good results when it pitted ceramic inserts against PCD in an aluminum-cutting application for a customer. He said the ceramic inserts that were used showed little wear and held up as well as their PCD counterparts. The biggest downside for ceramic inserts was the accumulation of some built-up edge that had to be removed.

The answer could be explicitly clear: The automotive industry was not ready yet to fully use the advantages of PCD tools in serial production. It was easier for woodworkers. During my preparation for LIGNA 1979, I could already assert, that at that time the machine development in the wood industry already fulfilled the requirements for the use of cost-saving, long-lasting PCD diamond tools.

Cutting tool material consisting of natural or synthetic diamond crystals bonded together under high pressure at elevated temperatures. PCD is available as a tip brazed to a carbide insert carrier. Used for machining nonferrous alloys and nonmetallic materials at high cutting speeds.

Now you will ask yourself what happened at FAMETA 80 during the premiere presentation of monoblock PCD milling cutters for aluminium machining? You will be surprised to hear about the following developments, which also lead to an international patent. You can read more about this topic in the next article of “Poly – poly – or what?”

Image

Cutting tool material consisting of polycrystalline cubic boron nitride with a metallic or ceramic binder. PCBN is available either as a tip brazed to a carbide insert carrier or as a solid insert. Primarily used for cutting hardened ferrous alloys.

Process that vaporizes conductive materials by controlled application of pulsed electrical current that flows between a workpiece and electrode (tool) in a dielectric fluid. Permits machining shapes to tight accuracies without the internal stresses conventional machining often generates. Useful in diemaking.

After the discovery of spark erosion for forming polycrystalline cutting materials, it should now become possible to offer more and more customized solutions for the use of PCD tools (see part 1-3 of this article series “Poly – poly – or what?”). Why was this not implemented – or better – why could this not yet be implemented during the early 1980s? Analogous to the successful introduction of diamond tools in the furniture industry?

“Stainless steel is an area that a lot of people never think of ceramic for,” he said. “It’s got to be hard, though — above, say, 32 to 35 Rockwell — because we’re going so fast and (therefore) cut so hot.” If the steel is below that hardness level, “you will melt it and light it on fire.”

“If somebody is cutting heat-resistant alloy at 125 sfm, and you bring in this new product that can do 1,600 sfm, it’s kind of like taking somebody from a horse to a rocket ship,” he said. So sometimes “the (reaction) is, ‘There’s no way I’m doing that.’”

In recent years, Bidemics has become popular with makers of larger aerospace engines, Howard said. But he added that some shops find the performance boost offered by the material a bit unsettling.

Machining of a flat, angled or contoured surface by passing a workpiece beneath a grinding wheel in a plane parallel to the grinding wheel spindle. See grinding.

Loosely, any milling tool. Horizontal cutters take the form of plain milling cutters, plain spiral-tooth cutters, helical cutters, side-milling cutters, staggered-tooth side-milling cutters, facemilling cutters, angular cutters, double-angle cutters, convex and concave form-milling cutters, straddle-sprocket cutters, spur-gear cutters, corner-rounding cutters and slitting saws. Vertical cutters use shank-mounted cutting tools, including endmills, T-slot cutters, Woodruff keyseat cutters and dovetail cutters; these may also be used on horizontal mills. See milling.

Many industries have profited from this in the most literal sense of the word during the last decades – first and foremost the automobile industry by implementing the principle of “energy savings through light-weight designs.” This success would have been unimaginable without PCD tools. Other pioneer accomplishments include the aircraft industry, machining of propellers in the wind-turbine industry and in general the wood and plastic (composite) industry, even spanning to achievements in electro engineering and in medical technology. The list could easily be continued. Whoever thinks that we are at the end of this development is mistaken. For example, laser technology will one day be so advanced that it will take its place as an efficient, precise manufacturing alternative, next to spark erosion and grinding.

Another showstopper was at the time the developmental stage of numerical controls; there were initial approaches from perforated discs to punched tapes for scanning specified machine data. But compared to today, these were small beginnings to successfully execute only a few electromotoric axial movements. The real takeoff into the future of freely programmable controls can be pinpointed between the years of 1984-1990; starting with the design of toy computers and going as far as the complete replacement of perforation strips for tooling machines.

In the 1970s, development and use of PCD tools were, with few exceptions, limited to the production of so-called “indexable inserts.” This term is quite wrong, since PCD was simply soldered onto one side of these inserts. After the discovery of spark erosion (1978) for the systematic removal of polycrystalline electroconductive particles such as polycrystalline synthetic diamonds (PCD and boron nitrides PCBN), this should change. Since 1980, progressive developments in electrical discharge grinding (EDG) and wire EDM turned the “niche tool” PCD into a global player.

“Some customers were using OD grinding or surface grinding for hardened materials just because that’s the traditional method that has been used,” Dillaman said. “But with ceramic inserts, you can remove large amounts of material much quicker than you could in a grinding application.”

Milling cutter held by its shank that cuts on its periphery and, if so configured, on its free end. Takes a variety of shapes (single- and double-end, roughing, ballnose and cup-end) and sizes (stub, medium, long and extra-long). Also comes with differing numbers of flutes.

Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

1. Permanently damaging a metal by heating to cause either incipient melting or intergranular oxidation. 2. In grinding, getting the workpiece hot enough to cause discoloration or to change the microstructure by tempering or hardening.

Dillaman said these endmills are made from the company’s Xsytin-1 material, which features a “whisker,” or reinforcing material, that’s grown internally via processing rather than laid in. This makes the ceramic material much harder to break apart, he said. He added that Xsytin-1 has shown itself to be capable of handling challenging roughing applications and turning interruptions.

Tangential velocity on the surface of the tool or workpiece at the cutting interface. The formula for cutting speed (sfm) is tool diameter 5 0.26 5 spindle speed (rpm). The formula for feed per tooth (fpt) is table feed (ipm)/number of flutes/spindle speed (rpm). The formula for spindle speed (rpm) is cutting speed (sfm) 5 3.82/tool diameter. The formula for table feed (ipm) is feed per tooth (ftp) 5 number of tool flutes 5 spindle speed (rpm).

Horst Lach is not only CEO of LACH DIAMANT Germany, but also of LACH DIAMOND INC., Grand Rapids, MI 49512, Tel. (616) 698-0101.

On the downside, Howard pointed out that the hardness of ceramic materials makes them brittle, so those who make tools out of ceramics can’t put very sharp edges on them. As a result, he said, ceramic tools don’t cut as efficiently as carbide tools.

In addition, he noted that ceramic tools are more expensive than their carbide counterparts. When it comes to tools with inserts, he said this is because ceramic inserts require a good deal of grinding while carbide inserts are easily mass-produced.

The amount of heat produced during the cutting process is a function of the cutting speed and the material being machined. So the ability of ceramics to conduct heat away from the cutting edge means that ceramic tools can run much faster than those made of carbide, CBN or PCD when cutting most materials, Howard said. He noted that while carbide tools cut heat-resistant alloys at 125 sfm, for example, ceramic tools can cut them at anywhere from 800 to 1,500 sfm.

Image

This also indicates the contemporary mentality at a time when pros and cons of numerically controlled machines and robots were intensely debated for serial industrial production.

Removal of undesirable materials from “loaded” grinding wheels using a single- or multi-point diamond or other tool. The process also exposes unused, sharp abrasive points. See loading; truing.

A ceramic endmill removes material much more quickly than an electrode, he said, and use of an endmill should slash the number of electrodes needed for the overall process, as well as the time spent creating them.

An example: multiple-axis routers on which it was already easy to measure the advantages of PCD endmills/profile mills compared to carbide. Of course, the same applied to the immediate success of diamond tool combinations on so-called double-end profile machines.

Cutting tool material consisting of natural or synthetic diamond crystals bonded together under high pressure at elevated temperatures. PCD is available as a tip brazed to a carbide insert carrier. Used for machining nonferrous alloys and nonmetallic materials at high cutting speeds.

“Traditionally, you have to use an electrode to burn material out of a hardened workpiece,” he said. “With our solid-ceramic endmills, (you can) use the endmill to remove the bulk of that material instead of having to create an electrode to remove the full amount of material.”

Only one driving force is the appropiate explanation for the rapid acceptance of diamond tools in the furniture industry: the stakeholders. At the time, all necessary decisions during the introduction of polycrystalline tools were shaped by medium-sized enterprises: All manufacturers of PCD tools – without exception family-managed companies – and equally the buyers, therefore the decision makers. Incidentally, I experienced identical developments not only in Germany, in Europe and in the United States, but also worldwide. The “big players” often came much later – manufacturers as well as buyers.

William Leventon is a contributing editor to Cutting Tool Engineering magazine. Contact him by phone at 609-920-3335 or via email at wleventon@gmail.com.

Originally, we were talking about names like GE Superabrasives or DeBeers. Today, PCD buyers must get used to the fact that the respective companies and departments have changed owners and names up to four times. Other, additional products intermittently offered on the market, such as mono diamonds and CVD (chemical vapor deposition), do not make any difference in this regard. The latest DeBeers/ Element Six product – so-called “Labour-made” jewel diamonds on CVD basis – are by the way currently the hype on the jeweller market. Such diamonds (brilliants) should be offered to consumers at a 70% “cheaper” price, and via a separate distribution channel than to natural diamonds. DeBeers/Element Six is building a large production facility in Pennsylvania for these “Labour-made” gem diamonds. Sales in the U.S. have already started, branding it “Lightbox Jewelry.”

“The big thing with ceramic is it conducts heat better than anything else,” said Steven Howard, marketing and engineering manager at NTK Cutting Tools USA in Wixom, Michigan.

From a historical perspective, this question was initially posed to Lach-Spezial-Werkzeuge GmbH, which was worldwide the first manufacturer of diamond tools for machining all wood and plastic materials (Feb. 1979 – see part 5 of this article series “Poly – poly – or what?”).

Cutting tool materials based on aluminum oxide and silicon nitride. Ceramic tools can withstand higher cutting speeds than cemented carbide tools when machining hardened steels, cast irons and high-temperature alloys.

Process that vaporizes conductive materials by controlled application of pulsed electrical current that flows between a workpiece and electrode (tool) in a dielectric fluid. Permits machining shapes to tight accuracies without the internal stresses conventional machining often generates. Useful in diemaking.